
MINIMAL STATE VARIABLE SOLUTIONS TOMARKOV-SWITCHING RATIONAL EXPECTATIONS MODELSROGER E. A. FARMER AND DANIEL F. WAGGONER AND TAO ZHAAbstra
t. We develop a new method for deriving minimal state variable (MSV)equilibria of a general 
lass of Markov swit
hing rational expe
tations models anda new algorithm for 
omputing these equilibria. We 
ompare our approa
h to pre-viously known algorithms, and we demonstrate that ours is both e�
ient and morereliable than previous methods in the sense that it is able to �nd MSV equilibriathat previously known algorithms 
annot. Further, our algorithm 
an �nd all pos-sible MSV equilibria in models. This feature is essential if one is interested in usinga likelihood based approa
h to estimation.
I. Introdu
tionFor at least twenty �ve years, e
onomists have estimated stru
tural models with
onstant parameters using U.S. and international data. Experien
e has taught usthat some parameters in these models are unstable and a natural explanation forthe failure of the parameter 
onstan
y assumption is that the world is 
hanging.There are 
ompeting explanations for the sour
e of parameter 
hange that in
ludeabrupt breaks in the varian
e of stru
tural sho
ks (Sto
k and Watson, 2003; Simsand Zha, 2006; Justiniano and Primi
eri, 2008), breaks in the parameters of theprivate se
tor equations due to �nan
ial innovation (Bernanke, Gertler, and Gil
hrist,1999; Christiano, Motto, and Rostagno, 2008; Gertler and Kiyotaki, 2010), or breaksin the parameters of monetary and �s
al poli
y rules (Clarida, Galí, and Gertler,2000; Lubik and S
horfheide, 2004; Davig and Leeper, 2007; Fernandez-Villaverde andRubio-Ramirez, 2008; Christiano, Ei
henbaum, and Rebelo, 2009). Markov-swit
hingrational expe
tations (MSRE) models 
an 
apture the fa
t that the stru
ture of thee
onomy 
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MSV SOLUTIONS TO MSRE MODELS 2Cogley and Sargent (2005a)'s estimates of random 
oe�
ient models suggest thatwhen parameters 
hange, they move around in a low dimensional subspa
e; that is,although all of the parameters of a VAR may 
hange � they 
hange together. Thisis pre
isely what one would expe
t if parameter 
hange were due to movements in asmall subset of parameters of a stru
tural rational expe
tations model. Although thisphenomenon 
an be e�e
tively modeled as a dis
rete Markov pro
ess, Sims (1982)and Cooley, LeRoy, and Raymon (1984) pointed out some time ago that a rationalexpe
tations model should take a

ount of the fa
t that agents will a
t di�erently ifthey are aware of the possibility of regime 
hange.In a related paper (Farmer, Waggoner, and Zha, 2009), we show that equilibria ofMSRE models are of two types; minimal state variable (MSV) equilibria and non-fundamental equilibria. Non-fundamental equilibria may or may not exist. If a non-fundamental equilibrium exists, it is the sum of an MSV equilibrium and a se
ondarysto
hasti
 pro
ess. Our innovation in this paper is to develop an e�
ient methodfor �nding MSV equilibria in a general 
lass of MSRE models, in
luding those withlagged state variables. Given the set of MSV equilibria, our earlier paper (Farmer,Waggoner, and Zha, 2009) shows how to 
onstru
t non-fundamental equilibria.Previous authors, notably Leeper and Zha (2003), Svensson and Williams (2005),Davig and Leeper (2007), and Farmer, Waggoner, and Zha (2008) have made someprogress in developing methods to solve for the equilibria of MSRE models. But thete
hniques developed to date are not 
apable of �nding all of the equilibria in a general
lass of MSRE models. We illustrate this point with an example. We use a simplerational expe
tations model to illustrate why previous approa
hes (in
luding our own)may not �nd an MSV equilibrium, and in the 
ase of multiple MSV equilibria, 
anat best �nd only one MSV equilibrium. In 
ontrast, we show that our new methodis able to �nd all MSV equilibria. The algorithm we develop is shown to be fast ande�
ient.
II. Minimal state variable solutionsA general 
lass of MSRE models studied in the literature has the following form:

A(st)






a1 (st)
(n−ℓ)×n

a2 (st)
ℓ×n






xt
n×1

=

B(st)






b1 (st)
(n−ℓ)×n

b2 (st)
ℓ×n






xt−1
n×1

+

Ψ(st)






ψ1 (st)
(n−ℓ)×k

ψ2 (st)
ℓ×k






εt
k×1

+

Π(st)






π1 (st)
(n−ℓ)×ℓ

π2 (st)
ℓ×ℓ






ηt
ℓ×1
, (1)



MSV SOLUTIONS TO MSRE MODELS 3where xt is an n×1 ve
tor of endogenous and predetermined variables, a1, a2, b1, b2, ψ1, ψ2, π1,and π2 are 
onformable parameter matri
es, εt is a k×1 ve
tor of i.i.d. stationary ex-ogenous sho
ks, and ηt is an ℓ×1 ve
tor of expe
tational errors. The variable st is anexogenous sto
hasti
 pro
ess following an h-regime Markov 
hain, where st ∈ {1, ...h}with transition matrix P = [pij] de�ned as
pij = Pr(st = i | st−1 = j).Be
ause the ve
tor ηt is a mean zero endogenous sto
hasti
 pro
ess and we impli
itlyassume that Πst is of full rank, without loss of generality we let π1 (st) = 0, π2 (st) = Iℓ,

ψ1 (st) = ψ (st), and ψ2 (st) = 0, where Iℓ is the ℓ× ℓ identity matrix.In most appli
ations, xt is partitioned as
x′t =

[

y′t z′t Ety
′

t+1

]

, (2)where the �rst pair [y′t z′t] is of dimension n− ℓ and the se
ond blo
k of Equation (1)is of the form yt = Et−1yt + ηt. The ve
tor yt is the endogenous 
omponent and zt isthe predetermined 
omponent 
onsisting of lagged and exogenous variables. In this
ase, the endogenous sho
ks ηt 
an be interpreted as expe
tational errors. Regime-swit
hing 
onstant terms 
an be en
oded by introdu
ing a dummy variable zc,t as anelement of the ve
tor zt together with the additional equation zc,t = zc,t−1, subje
t tothe initial 
ondition zc,0 = 1. While this addition introdu
es a unit eigenvalue into thesystem, the solution te
hniques developed in this paper are not a�e
ted be
ause thedummy variable is just a 
onstant term and the stationarity of the system is inta
t.In Farmer, Waggoner, and Zha (2009), we develop a set of ne
essary and su�-
ient 
onditions for equilibria to be determinate in a 
lass of forward-looking MSREmodels. We show in that paper that every solution of an MSRE model, in
ludingan indeterminate equilibrium, 
an be written as the sum of an MSV solution and ase
ondary sto
hasti
 pro
ess (i.e., the sunspot 
omponent). For models with laggedstate variables, the most 
hallenging task is to �nd all MSV equilibria; this taskhas not been su

essfully a

omplished in the literature. On
e an MSV equilibriumis found, the se
ondary sto
hasti
 pro
ess is straightforward to obtain, as shown inFarmer, Waggoner, and Zha (2009).To give a pre
ise des
ription of an MSV equilibrium in an MSRE model, we �rst
onsider the 
onstant parameter 
ase, a spe
ial 
ase of the Markov-swit
hing system



MSV SOLUTIONS TO MSRE MODELS 4given by (1), whi
h we represent as follows,
A







a1
(n−ℓ)×n

a2
ℓ×n






xt
n×1

=

B






b1
(n−ℓ)×n

b2
ℓ×n






xt−1
n×1

+

Ψ






ψ
(n−ℓ)×k

0
ℓ×k






εt
k×1

+

Π




0
(n−ℓ)×ℓ

Iℓ



 ηt
ℓ×1
. (3)There are a variety of te
hniques to solve this system and the general solution is ofthe form

xt = Γxt−1 + Ξ1εt + Ξ2γt, (4)where the mean-zero random pro
ess γt, if present, is a sunspot 
omponent. Forexpositional 
larity, let us assume that A is invertible. The matri
es Γ, Ξ1, and Ξ2
an be obtained from the real S
hur de
omposition of A−1B = UTU ′. The matrix
U is orthogonal and T is blo
k upper triangular with 1 × 1 and 2 × 2 blo
ks alongits diagonal. The 1× 1 blo
ks 
orrespond to real eigenvalues of A−1B and the 2× 2blo
ks 
orrespond to 
onjugate pairs of 
omplex eigenvalues of A−1B. The real S
hurde
omposition is unique up to the ordering of the eigenvalues along the blo
k diagonalof T . If we partition U as U = [V V̂ ], then the S
hur de
omposition 
an be writtenas

A−1B =
[

V V̂
]

[

T11 T12

0 T22

][

V ′

V̂ ′

]

.If we de�ne Γ = V T11V
′, Ξ1 = V G1, and Ξ2 = V N1, where G1 and N1 are solutionsof the matrix equations

[

AV Π
]

[

G1

G2

]

= Ψ and [AV Π
]

[

N1

N2

]

= 0,then Equation (4) will de�ne a solution of the system given by (3). This is straightforward to verify by multiplying Equation (4) by A and then transforming the righthand side using the de�nitions of Γ, Ξ1, and Ξ2, the fa
t that xt is in the 
olumnspa
e of V , the identity A−1BV = ΓV and the impli
it de�nition ηt = −G2εt−N2γt.Furthermore, any solution will 
orrespond to some ordering of the eigenvalues A−1Band a partition of U . Sin
e we require solutions to be stable,1 all the eigenvalues of
T11 must lie inside the unit 
ir
le.The �rst requirement of an MSV solution is that it be fundamental, i.e. it 
annot
ontain a sunspot 
omponent. This implies that N1 must be zero or equivalentlythat [AV Π] must be of full 
olumn rank. The se
ond requirement is that if xtis de
omposed as an endogenous 
omponent, a predetermined 
omponent, and an1For 
onstant parameter systems su
h (3), stable and bounded are equivalent requirements, butnot so for the time varying systems su
h as (1).



MSV SOLUTIONS TO MSRE MODELS 5expe
tations 
omponent as in Equation (2), then no restri
tions should be pla
edon the �data�, whi
h 
orresponds to the endogenous and predetermined 
omponents.This implies that the number of 
olumns in V must be n − ℓ and that [AV Π] beinvertible.We 
an use these ideas to formalize what we mean by an MSV equilibrium. First,note that the 
olumn spa
e of V is the span of solution xt in the sense that supportof the random pro
ess xt is 
ontained in and spans the 
olumn spa
e of V . A solutionof the system (3) is an MSV solution if and only if it is the unique solution on itsspan and there are no restri
tions on the endogenous and predetermined variables ytand zt. On the span Etyt+1 is a fun
tion of yt and zt. These ideas 
an be expandedto the Markov swit
hing system given by (1) and (2). In this 
ontext, the relevant
on
ept is not the span of the solution, but the 
onditional span. The span of thesolution xt 
onditional on st = i is the span of the support of the random pro
ess xtgiven st = i.De�nition 1. A stable solution of the system given by (1) and (2) is a minimal statevariable solution if and only if it is unique given all the 
onditional spans and none ofthe 
onditional spans impose a relationship among the endogenous and predetermined
omponents yt and zt.Unlike the 
onstant parameter 
ase, one 
an no longer apply an eigenvalue 
on-dition used to identify all 
andidates for the 
onditional spans. One 
an, however,use iterative te
hniques to 
onstru
t MSV equilibria. Our approa
h builds on thefollowing theorem.Theorem 1. If {xt, ηt}∞t=1 is an MSV solution of the system (1), then
xt = VstF1,stxt−1 + VstG1,stεt, (5)
ηt = − (F2,stxt−1 +G2,stεt) , (6)where the matrix [A(i)Vi Π
] is invertible and

[

A(i)Vi Π
]

[

F1,i

F2,i

]

= B(i), (7)
[

A(i)Vi Π
]

[

G1,i

G2,i

]

= Ψ(i), (8)
(

h
∑

i=1

pi,jF2,i

)

Vj = 0ℓ,n−ℓ, for 1 ≤ j ≤ h. (9)



MSV SOLUTIONS TO MSRE MODELS 6The dimension of Vi is n× (n− ℓ), F1,i is (n− ℓ)×n, F2,i is ℓ×n, G1,i is (n− ℓ)×k,and G2,i is ℓ× k.To �nd an MSV equilibrium, we must �nd matri
es Vi su
h that [A(i)Vi Π] isinvertible and Equation (9) holds where F2,i is de�ned via Equation (7). Sin
e Π =

[0ℓ,n−ℓ Iℓ]
′, the matrix [A(i)Vi Π] is invertible if and only if the upper (n−ℓ)×(n−ℓ)blo
k of A(i)Vi is invertible. It is easy to see that multiplying Vi on the right by aninvertible matrix, and hen
e multiplying F1,i and G1,i on the left by the inverse of thismatrix, will not 
hange equations (5) through (9). Thus, without loss of generality,we assume that

A(i)Vi =

[

In−ℓ

−Xi

] (10)for some ℓ× (n− ℓ) matrix Xi. Sin
e
F2,i =

[

0ℓ,n−ℓ Iℓ

] [

A(i)Vi Π
]

−1

B(i)

=
[

Xi Iℓ

]

B(i),Equation (9) be
omes
h
∑

i=1

pij

[

Xi Iℓ

]

B(i)A(j)−1

[

In−ℓ

−Xj

]

= 0ℓ,n−ℓ. (11)In the previous derivation, we assume that A(i) is invertible for expositional 
larity.In Appendix B, we remove this assumption and show that our iterative algorithmworks even if A(i) is not invertible.The advantage of our method is that we are able to redu
e the task of �nding anMSV solution to that of 
omputing the roots of a quadrati
 polynomial in severalvariables. We exploit Newton's method to 
ompute these roots. This has the ad-vantage over previously suggested methods of being fast and lo
ally stable aroundany given solution. This property guarantees that by 
hoosing a large enough gridof initial 
onditions we will �nd all possible MSV solutions. This lo
al 
onvergen
eproperty does not hold for iterative solutions that have previously been suggested inthe literature.Let X = (X1, · · · , Xh), de�ne fj to be the fun
tion from R
hℓ(n−ℓ) to R

ℓ(n−ℓ) givenby
fj (X) =

h
∑

i=1

pij

[

Xi Iℓ

]

B(i)A(j)−1

[

In−ℓ

−Xj

]

, (12)and f to be the fun
tion from R
hℓ(n−ℓ) to R

hℓ(n−ℓ) given by
f (X) = (f1 (X) , · · · , fh (X)) . (13)



MSV SOLUTIONS TO MSRE MODELS 7The quadrati
 polynomial equations, f(X) = 0, are the same as the 
onstraintsrepresented by (9).Thus, �nding an MSV equilibrium is equivalent to �nding the roots of f (X) andTheorem 1 suggests the following 
onstru
tive algorithm for �nding MSV solutions.Algorithm 1. Let X(1) =
(

X
(1)
1 , · · · , X

(1)
h

) be an initial guess. If the kth iteration is
X(k) =

(

X
(k)
1 , · · · , X

(k)
h

), then the (k + 1)th iteration is given by
vec
(

X(k+1
)

= vec
(

X(k)
)

− f ′
(

X(k)
)−1

vec
(

f
(

X(k)
))

.where
f ′ (X) =









∂f1
∂X1

(X) · · · ∂f1
∂Xh

(X)... . . . ...
∂fh
∂X1

(X) · · · ∂fh
∂Xh

(X)









.The sequen
e X(k) 
onverges to a root of f(X).It is straightforward to verify that for i 6= j,
∂fj
∂Xi

(X) = pij

(

[

In−ℓ 0n−ℓ,ℓ

]

B(i)A(j)−1

[

In−ℓ

−Xj

])

′

⊗ Iℓand for i = j,
∂fj
∂Xj

(X) = pjj

(

[

In−ℓ 0n−ℓ,ℓ

]

B(j)A(j)−1

[

In−ℓ

−Xj

])

′

⊗ Iℓ

+ In−ℓ ⊗

(

h
∑

k=1

pkj

[

Xk Iℓ

]

B(k)A(j)−1

[

0n−ℓ,ℓ

−Iℓ

])

.In a series of 
omputational experiments, reported below, we have found that thisalgorithm is relatively fast and that it 
onverges to multiple solutions, when theyexist, for a suitable 
hoi
e of initial 
onditions.On
e an MSV equilibrium is obtained, one 
an verify whether this solution isstationary (mean-square-stable) in the sense of Costa, Fragoso, and Marques (2004,page 36). Let Γj = VjA(j) for j = 1, . . . , h. As shown in Costa, Fragoso, andMarques (2004, Proposition 3.9, p. 36 and Proposition 3.33, p.49), an MSV solutionis stationary if and only if the eigenvalues of
(P ⊗ In2) diag [Γ1 ⊗ Γ1, . . . ,Γh ⊗ Γh] , (14)are all inside the unit 
ir
le.In Se
tion IV, we present simple examples in whi
h existing algorithms, that havebeen proposed in the literature, break down. We also show that when there are



MSV SOLUTIONS TO MSRE MODELS 8multiple MSV equilibria, existing algorithms 
an at best �nd only one equilibriumand sometimes do not 
onverge to any MSV equilibrium even when the initial startingpoint is 
lose to the equilibrium. This result is unsatisfa
tory be
ause resear
hersshould be able to estimate models by sear
hing a
ross the spa
e of all equilibria andsele
ting the one that maximizes the posterior odds ratios. In all the examples westudy, our algorithm is 
apable of �nding all MSV equilibria by randomly 
hoosingdi�erent initial points. III. Previous approa
hesTwo existing algorithms have been frequently used to �nd an MSV equilibrium ina MSRE model: the �xed-point (FP) algorithm developed in a previous version ofthis paper (Farmer, Waggoner, and Zha (2008)) and the iterative algorithm proposedby Svensson and Williams (2005). We review these algorithms in this se
tion and inSe
tion IVwe dis
uss why they do not always work well in pra
ti
e.III.1. The FP algorithm. To apply the FP algorithm, Farmer, Waggoner, and Zha(2008) show how to de�ne an expanded state ve
tor x̃t. Using their de�nition, one
an write the Markov swit
hing equations as a 
onstant parameter system of the form
Ãx̃t = B̃x̃t−1 + Ψ̃ũt + Π̃ηt, (15)where x̃t ∈ Rnh has dimension nh× 1.To write system 1 in this form, de�ne a family of matri
es {φi}

h
i=1 where h is thenumber of Markov states and ea
h φi has dimension ℓ× n with full row rank. De�ne

ej as a 
olumn ve
tor equal to 1 in the jth element and zero everywhere else and thematrix Φ as
Φ

ℓ(h−1)×nh
=









e
′

2 ⊗ φ2...
e
′

h ⊗ φh









. (16)Let the matri
es Ã, B̃, and Π̃ be given by
Ã

nh×nh
=







diag (a1 (1) , · · · , a1 (h))

a2 · · · a2

Φ






,

B̃
nh×nh

=







diag (b1 (1) , · · · , b1 (h)) (P ⊗ In)

b2 · · · b2

0






,
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Π̃

nh×ℓ
=
[

0, Iℓ, 0
]

′

.To de�ne ũt and the 
orresponding 
oe�
ient matrix Ψ̃, let 1h be the h-dimensional
olumn ve
tor of ones and let
Si

(n−ℓ)h×nh

= (diag [b1 (1) , · · · , b1 (h)])× [(ei1
′

h − P )⊗ In] ,for i = 1. . . . , h. With this notation, we have
ũt =

[

Sst

(

est−1
⊗ (1′

h ⊗ In) x̃t−1

)

est ⊗ ut

]

,and
Ψ̃

nh×(k+n−ℓ)h
=







I(n−ℓ)h diag (ψ (1) , · · · , ψ (h))

0 0

0 0






.It is straightforward to show that Et−1 [ut] = 0. Thus, (15) is a linear system ofrational expe
tations equations and the solution of this linear system 
an be 
omputedby known methods. Farmer, Waggoner, and Zha (2008), show that a solution of theexpanded system (15) with the initial 
onditions x0 and x̃0 = e

′

s0
⊗x0 is a solution ofthe original nonlinear system. The ve
tors xt and x̃t are related by the expression,

xt =
(

e
′

st
⊗ In

)

x̃t. (17)Although (3) is a linear rational expe
tations system, �nding {φ1, φ2, ...φh} for thislinear system is a �xed-point problem of a system of nonlinear equations. Farmer,Waggoner, and Zha (2008) propose the following algorithm. Let the supers
ript
(n) denote the nth step of an iterative pro
edure. Beginning with a set of initialmatri
es {φ(0)

i

}h

i=2
, de�ne Φ(0) using Equation (16) and generate the asso
iated matrix

A(0). Next, 
ompute the QZ de
omposition of {A(0), B
} and denote the generalizedeigenvalues 
orresponding the unstable roots by Z(0)

u =
[

z
(0)
1 , . . . , z

(0)
h

], where z(0)i isan ℓ × n matrix. Finally, set φ(1)
i = z

(0)
i . Form this new set of values of φi's, forma new matrix A(1). Repeat this algorithm and, if it 
onverges, the system (15) willgenerate sequen
es {xt, ηt}

∞

t=1 that are 
onsistent with the system (1), where xt isgoverned by (17).The quali�
ation if it 
onverges is 
ru
ial be
ause, as we will show in Se
tion IV,it may not 
onverge even in the simplest rational expe
tations model.



MSV SOLUTIONS TO MSRE MODELS 10III.2. The SW algorithm. In this subse
tion we des
ribe the algorithm developedby Svensson and Williams (2005). As we exhaust many 
ommonly used mathemati
alsymbols for matri
es and ve
tors, we will use the same notation for some variablesand parameters as in Se
tion III.1 as long as this double use of the notation does not
ause 
onfusion.Svensson and Williams (2005)'s algorithm is an iterative approa
h to solving ageneral Markov-swit
hing system. The system is written as
Xt = A11,stXt−1 + A12,stxt−1 + Cstǫt, (18)
EtHst+1

xt+1 = A21,stXt + A22,stxt, (19)where Xt is an nX × 1 ve
tor of predetermined variables, xt is an nx × 1 ve
tor offorward-looking variables, and st. The MSV solution takes the following form:
xt = GstXt.The algorithm works as follows.(1) Start with an initial guess of G(0)

j , where st = j.(2) For n = 0, 1, 2, . . . , iterate the value of G(n+1)
j a

ording to

G
(n+1)
j =

[

A22,j −
∑

k

PkjHkG
(n)
k A12,k

]

−1 [
∑

k

PkjHkG
(n)
k A11,k − A21,j

]

. (20)This algorithm is both elegant and e�
ient and 
an handle a large system. If it
onverges to an MSV solution, the 
onvergen
e is fast. As we show below, however,the algorithm may not 
onverge even if there is an MSV equilibrium.IV. Comparison of our algorithm with alternativesIn this se
tion we illustrate the properties of di�erent methods using three simpleexamples based on the following model:
φstπt = Etπt+1 + δstπt−1 + βstrt,

rt = ρstrt−1 + ǫt,where st = 1, 2 takes one of two dis
rete values a

ording to the Markov-swit
hingpro
ess. If we interpret πt as in�ation and rt as an exogenous sho
k to in
ome orpreferen
es, this equation 
an be derived dire
tly from the 
onsumer's optimizationproblem together with a monetary poli
y rule that moves the interest rate in responseto 
urrent and past in�ation rates (see Liu, Waggoner, and Zha (2009)).



MSV SOLUTIONS TO MSRE MODELS 11IV.1. An example with a unique MSV equilibrium. We set δst = 0, βst = β =

1, and ρst = ρ = 0.9 for all values of st, φ1 = 0.5, φ2 = 0.8, p11 = 0.8, and p22 = 0.9.One 
an show that for this parameterization (i.e., δst = 0), there is a unique MSVequilibrium.2 The MSV solution has a 
losed form given by the expression,
πt = g1,strt−1 + g2,stǫt,where

[

g1,1

g1,2

]

=

[

p11ρ− φ1 p21ρ

p12ρ p22ρ− φ2

]

−1 [

βρ

βρ

]

,

g2,st =
p1stg1,1 + P2stg1,2 + β

φst

.In experiments based on this example, our algorithm 
onverged qui
kly to thefollowing MSV equilibrium for all initial 
onditions,
πt = −10.9285rt−1 − 12.1428ǫt, for st = 1,

πt = 8.3571rt−1 + 9.2857ǫt, for st = 2.Using (14), one 
an easily verify that this equilibrium is mean square stable.Both the FP or the SW algorithms, however, are unstable when applied to thisexample. To gain an intuition of why these previous algorithms do not work, we mapthis example to the notation of the SW algorithm des
ribed in Se
tion III.2:
Hk = 1, nX = nx = 1, Xt = rt, xt = πt, A11,k = ρ, A12,k = 0, A21,j = −β,A22,j = φj.For expositional 
larity, we further simplify the model by assuming that φ1 = φ2 =

φ = 0.85. The MSV equilibrium for this 
ase 
an be 
hara
terized as
πt = g1rt−1 + g2εt,where g1 = βρ

φ−ρ
. It follows from (20) that

g
(n)
1 =

(

g
(n−1)
1 + β

)

ρ

φ
.The above iterative algorithm also 
hara
terizes the FP algorithm. Sin
e the MSVsolution g1 is great than 1 in absolute value and ρ/φ > 1 in this 
ase, g(n)1 will goto either plus in�nity or minus in�nity (depending on the initial guess) as n → ∞.Thus, the FP and SW algorithms 
annot �nd the MSV equilibrium, even when thereis only a unique MSV equilibrium.2There also exists a 
ontinuum of non-fundamental equilibria around the unique MSV solution.



MSV SOLUTIONS TO MSRE MODELS 12IV.2. An example with two MSV equilibria. We now provide an example wherethere are multiple MSV equilibria, but the SW algorithm 
an �nd only one of the twoMSV equilibria and the FP algorithm 
annot 
onverge at all. In 
ontrast, our pro-posed algorithm 
onverges to all of the MSV equilibria by randomly sele
ting di�erentsets of initial guesses. The example has the following parameter 
on�guration:
φ1 = 0.5, φ2 = 0.8, δ1 = −0.7, δ2 = 0.4,

β1 = β2 = 1, ρ1 = ρ2 = 0, p11 = 1.0, p22 = 0.64.One 
an easily verify that the �rst regime, taken in isolation, is determinate while these
ond regime is indeterminate. We 
hoose this example to show that even thoughthe �rst regime is an absorbing state be
ause p11 = 1.0, the MSV equilibrium inthe regime-swit
hing environment is not unique. To see this point 
learly, note thatthe MSV solution takes the form πt = g1,stπt−1 + g2,stǫt with two distin
t stationaryequilibria:
g1,1 = −0.623212, g1,2 = 0.675998, �rst MSV equilibrium;
g1,1 = −0.623212, g1,2 = 0.924559, se
ond MSV equilibrium;Note that the multiple equilibria o

ur only in the se
ond regime. The equilibriumin the �rst regime is unique.The SW algorithm 
annot �nd the se
ond equilibrium; it 
onverges only to the �rstequilibrium. The FP algorithm fares worse. It 
annot 
onverge to either of the twoMSV equilibria.IV.3. An example with more than two MSV equilibria. We now provide anexample that a multipli
ity of MSV equilibria 
an exist. Both FP and SW algorithms
an �nd only one of them. The question is whether our proposed algorithm is 
apableof �nding all the solutions or only a subset of them.The example has the following parameter 
on�guration:

φ1 = 0.2, φ2 = 0.4, δ1 = −0.7, δ2 = −0.2,

β1 = β2 = 1, ρ1 = ρ2 = 0, p11 = 0.9, p22 = 0.8.



MSV SOLUTIONS TO MSRE MODELS 13An MSV equilibrium takes the form πt = g1,stπt−1 + g2,stǫt. For this example, thereare four stationary MSV equilibria given by
g1,1 = −0.765149, g1,2 = −0.262196, �rst MSV equilibrium;
g1,1 = 0.960307, g1,2 = 0.646576, se
ond MSV equilibrium;
g1,1 = −0.826316, g1,2 = 0.96551, third MSV equilibrium;
g1,1 = 1.024809, g1,2 = −0.392746, fourth MSV equilibrium.Our algorithm 
onverges rapidly to all the MSV solutions when we vary the initialguess randomly. In 
ontrast, both the FP and SW algorithms, no matter what theinitial guess (unless it is set exa
tly at an MSV solution), 
onverge to only the �rstMSV equilibrium reported above.Farmer, Waggoner, and Zha (2008) show an easy-to-
he
k 
ondition for the unique-ness of the equilibrium if it is found by the FP algorithm. This 
ondition applies onlyto a lo
al uniqueness and to the sta
ked linear system 15. This lo
al results 
annot beextended to the original Markov-swit
hing system 1. Indeed, as this example shows,even the �rst MSV equilibrium is lo
ally unique a

ording to Farmer, Waggoner, andZha (2008), there exist other MSV equilibria that are not in the neighborhood of the�rst equilibrium. Our new method is developed to �nd all possible MSV equilibria.V. A general strategy of sele
ting an equilibriumIn this se
tion we dis
uss a general strategy of sele
ting an equilibrium in thepresen
e of multiple MSV equilibria. We �rst provide details of our e�
ient algorithmused for drawing initial guesses that 
over a wide range of values in order to �nd allthe MSV equilibria. After we have all the MSV equilibria in hand, we then proposea likelihood based 
riterion for sele
ting an MSV equilibrium while dis
ussing otheralternative 
riteria.V.1. Initial values. Our new algorithm requires an initial guess in sear
h of anequilibrium. A brute for
e approa
h is to simply use a large grid of initial valuesin a hope that di�erent initial values may lead to di�erent MSV equilibria. Thisapproa
h is not a problem for a theoreti
al paper whose purpose is to highlight keyproperties of a parti
ular model of interest. In an estimation exer
ise, however, thisapproa
h 
an be
ome extremely ine�
ient when the size of a dynami
 sto
hasti
general equilibrium (DSGE) model is large.



MSV SOLUTIONS TO MSRE MODELS 14Dan and Roger: please double 
he
k the proposed algorithm. An e�
ientapproa
h is to randomly sample initial values by exploring the theoreti
al propertiesof the MSV solution. From the solution (5) one 
an see that Vi is uniquely deter-mined only up to normalization dis
ussed in Hamilton, Waggoner, and Zha (2007).Thus, we 
an always impose the restri
tion that the 
olumns of Vi be orthonormal.Theorem 9 in Rubio-Ramírez, Waggoner, and Zha (2010) gives an e�
ient algorithmof implementing a random sele
tion of Vi. Spe
i�
ally, let X̃i be an n × n randommatrix with ea
h element having an independent standard normal distribution; andlet X̃i = Q̃iR̃i be the QR de
omposition of X̃i with the diagonal of R̃i normalized tobe positive. Then the �rst n− ℓ 
olumns of Q̃i form an independent random sele
tionof Vi. The following algorithm gives a systemati
 way of �nding all MSV equilibria.Algorithm 2. For ea
h independent sele
tion of Vi, we obtain the 
orrespondingrandom sele
tion of the initial value of Xi a

ording to (10).(Step 1) Randomly draw Ñ initial values of (X1, · · · , Xh).(Step 2) For ea
h initial value, apply apply Algorithm 1 to �nd an MSV equilibrium.(Step 3) Colle
t all MSV equilibria.(Step 4) Repeat Steps 1-3 with Ñ = 2 ∗ Ñ initial values.(Step 5) Compare all MSV equilibria in Step 4 to the previously obtained MSVequilibria.(Step 6) If they are the same, stop. If they are additional MSV equilibria found, goba
k to Steps 4 and 5.Our experien
e indi
ates that with the starting number Ñ = 20, it often takes nomore than three repetitions for Algorithm 2 to 
onverge.V.2. How to sele
t a parti
ular MSV equilibrium? On
e we obtain all MSVequilibria, a relevant question is: Whi
h equilibrium should be sele
ted? One answeris to follow the engineering literature (Costa, Fragoso, and Marques, 2004) and sele
tthe MSV equilibrium that is most stationary (i.e., the equilibrium with the smallestdominant eigenvalue (in absolute value) of the matrix (14)). The intuition is that thismost stationary is likely to be most �attra
tive� in the sense that most initial guesses of
X will 
onverge to this equilibrium. It turns out that this intuition is not always true.To see this point, we 
ondu
t a heuristi
 exer
ise by randomly sele
ting 1000 initialvalues ofX and tabulating the per
entage in whi
h a parti
ular equilibrium the initialvalues 
onverge to. For the example dis
ussed in Se
tion IV.2, the �rst equilibrium(with the dominant eigenvalue 0.388) re
eives 73% and the se
ond equilibrium (withthe dominant eigenvalue 0.547) re
eives 27%. For the example studied in Se
tion IV.3,



MSV SOLUTIONS TO MSRE MODELS 15the �rst and se
ond equilibria (with the dominant eigenvalues being 0.529 and 0.845respe
tively) share the highest per
entage of 
onvergen
e and ea
h re
eives 33%. These
ond highest per
entage of 
onvergen
e, 26%, goes to the third equilibrium (with thedominant eigenvalue 0.811). The fourth equilibrium (with the dominant eigenvalue
0.949) has the lowest per
entage of 
onvergen
e (8%). This example shows that a lessstationary equilibrium 
an have the highest degree of attra
tion.A better argument for sele
ting the most stationary MSV equilibrium is o�eredby Ellison and Pearlman (Forth
oming). They show that the most stationary MSVequilibrium is E-stable while other equilibria are not.3 This is a persuasive argumentfrom the view point of learning. For Markov-swit
hing rational expe
tations modelsthemselves, however, a more relevant question is based on the likelihood prin
iple:Whi
h equilibrium should be sele
ted 
onditional on the data we observe? This al-ternative question is important be
ause, ultimately, an equilibrium we sele
t oughtto explain the observed data.We propose the following likelihood based approa
h. For ea
h 
on�guration ofmodel parameters, we use Algorithms 1 and 2 to �nd all MSV equilibria. For ea
hequilibrium, we 
ompute the likelihood value re
ursively by following the method ofSims, Waggoner, and Zha (2008) (note that the prior density value is the same forall the equilibria). We 
ompare all the likelihood values and sele
t an equilibriumasso
iated with the highest likelihood value. It is important to bear in mind thatfor a di�erent 
on�guration of model parameters due to parameter un
ertainty, thenature of the sele
ted equilibrium may be di�erent as well.VI. An appli
ation to a monetary poli
y modelIn previous se
tions, we showed that the FP and SW algorithms may not 
onvergeto an MSV equilibrium and that if they 
onverge, they 
onverge to only one MSVequilibrium. In 
ontrast, our new algorithm, using Newton's method to 
omputeroots, is stable, e�
ient, and reliable for �nding all MSV equilibria.In this se
tion we present simulation results based on a 
alibrated version of theNew-Keynesian model and we use it to study 
hanges in output, in�ation, and thenominal interest rate.Clarida, Galí, and Gertler (2000) and Lubik and S
horfheide (2004) argue thatthe large �u
tuations in output, in�ation, and interest rates are manifestations ofindetermina
y indu
ed by passive monetary poli
y. Sims and Zha (2006), on the3Their theoreti
al results pertain only to a 
lass of rational expe
tations models without Markov-swit
hing parameters.



MSV SOLUTIONS TO MSRE MODELS 16other hand, �nd no eviden
e in favor of indetermina
y when they allow monetarypoli
y to swit
h regimes sto
hasti
ally. Furthermore, they �nd that on
e the modelpermits time variation in disturban
e varian
es, there is no eviden
e in favor of poli
y
hanges at all (see also Cogley and Sargent (2005b) and Primi
eri (2005)).On
e it is known that poli
y 
hanges might o

ur, a rational agent should treatthese 
hanges probabilisti
ally and the probability of a future poli
y 
hange shouldenter into his 
urrent de
isions. Previous work in this area has negle
ted these e�e
tsand all of the studies 
ited above study regime swit
hes in a purely redu
ed formmodel. We show in this se
tion how to use the MSV solution to a MSRE model tostudy the e�e
ts of regime 
hange that is rationally anti
ipated to o

ur. We usesimulation results to show that the persisten
e and volatility in in�ation and theinterest rate 
an be the result of (1) poli
y 
hanges, (2) 
hanges in sho
k varian
es,or (3) 
hanges in private se
tor parameters. Hen
e, our method provides a tool forempiri
al work, in whi
h a more formal analysis of the data 
an be used to dis
riminatebetween these 
ompeting explanations.Our regime-swit
hing poli
y model, based on Lubik and S
horfheide (2004), hasthe following three stru
tural equations:
xt = Etxt+1 − τ(st)(Rt − Etπt+1) + zD,t, (21)

πt = β(st)Etπt+1 + κ(st)xt + zS,t, (22)
Rt = ρR(st)Rt−1 + (1− ρR(st)) [γ1(st)πt + γ2(st)xt] + ǫR,t, (23)where xt is the output gap at time t, πt is the in�ation rate, and Rt is the nominalinterest rate. Both πt and Rt are measured in terms of deviations from the steadystate.4 The 
oe�
ient τ measures the intertemporal elasti
ity of substitution, β isthe household's dis
ount fa
tor, and the parameter κ re�e
ts the rigidity or sti
kinessof pri
es.The sho
ks to the 
onsumer and �rm's se
tors, zD,t and zS,t, are assumed to evolvea

ording to an AR(1) pro
ess:
[

zD,t

zS,t

]

=

[

ρD(st) 0

0 ρS(st)

][

zD,t−1

zS,t−1

]

+

[

ǫD,t

ǫS,t

]

,where ǫD,t is the innovation to a demand sho
k, ǫS,t is an innovation to the supplysho
k, and ǫR,t is a disturban
e to the poli
y rule. All these stru
tural sho
ks are4See Liu, Waggoner, and Zha (2009) for a proof that the steady state in this example does notdepend on regimes.



MSV SOLUTIONS TO MSRE MODELS 17i.i.d. and independent of one another. The standard deviations for these sho
ks are
σD(st), σS(st), and σR(st).Lubik and S
horfheide (2004) estimate a 
onstant-parameter version of this modelfor the two subsamples: 1960:I-1979:II and 1979:III-1997:IV. In our 
alibration we
onsider two regimes. The parameters in the �rst regime 
orrespond to their estimatesfor the period 1960:I-1979:II and the parameters in the se
ond regime 
orrespond tothose for 1979:III-1997:IV. The 
alibrated values are reported in Tables 1 and 2. Thetransition matrix is 
al
ulated by mat
hing the average duration of the �rst regime tothe length of the �rst subsample and by assuming that the se
ond regime is absorbingto a

ommodate the belief that the pre-Vol
ker regime will never return:5

P =

[

0.9872 0

0.0128 1

]

.A simple 
al
ulation veri�es that, if only one regime were allowed to exist (in thesense that a rational agent was 
ertain that no other poli
y would ever be followed)the �rst regime would be indeterminate and the se
ond would be determinate. Whena rational agent forms expe
tations by taking a

ount of regime 
hanges, we needto know if there exist multiple MSV equilibria. In our 
omputations we apply ourmethod to this system with a large number of randomly sele
ted starting points andwe obtain multiple MSV solutions for some 
on�gurations of parameterization thatwe report below.This kind of forward-looking model provides a natural laboratory to experimentwith di�erent s
enarios in light of the debate on 
hanges in poli
y or 
hanges in sho
kvarian
es. The estimates provided by Lubik and S
horfheide (2004) and reported inTables 1 and 2 mix 
hanges in 
oe�
ients related to monetary poli
y with 
hanges inother parameters in the model, sin
e Lubik and S
horfheide (2004) do not a

ount forthe e�e
t of the probability of regime 
hange on the 
urrent behavior. One variationin the stru
tural parameter values is to let the 
oe�
ient on the in�ation variable inthe poli
y equation (23) 
hange while holding all the other parameters �xed a
rossthe two regimes. Tables 3 and 4 report the parameter values 
orresponding to thiss
enario, in whi
h all the other parameters take the average of the values in Tables 1and 2 over the two regimes. We 
all this s
enario �poli
y 
hange only�.In a se
ond s
enario, �varian
e 
hange only�, we keep the value of the poli
y 
oe�-
ient γ1 at 2.19 for both regimes while letting the standard deviation σD in the �rst5One 
ould also mat
h the average duration of the se
ond regime to the length of the se
ondsubsample, whi
h give p22 = 0.9865.



MSV SOLUTIONS TO MSRE MODELS 18regime be �ve times larger than that in the se
ond regime and keeping the value of
σS at 0.3712 for both regimes.6 The parameter values for this s
enario are reportedin Tables 5 and 6.The last s
enario we 
onsider allows only the parameters in the private se
tor to
hange. We 
all it �private-se
tor 
hange only�. The idea is to study whether thepersisten
e and volatility in in�ation 
an be generated by 
hanges in the privatese
tor in a forward-looking model. We let the 
oe�
ient τ be 0.06137 in the �rstregime and 0.6137 in the se
ond regime. Tables 7 and 8 report the values of all theparameters for this s
enario. Similar results 
an be a
hieved if one lets the value of
κ in the �rst regime be mu
h smaller than that in the se
ond regime.Using the method dis
ussed in Se
tion II, we obtain two MSV equilibria that 
har-a
terize the �rst two s
enarios and a unique MSV equilibrium for the last two s
e-narios. Figures 1-3 display simulated paths of the output gap, the interest rate, andin�ation under ea
h of these s
enarios. With the original estimates reported in Lubikand S
horfheide (2004), the largest eigenvalue for the matrix (14) is 0.8617 for oneequilibrium and 0.7225 for the other. The dynami
s are quite di�erent for these twoMSV equilibria. We display the simulated data based on the MSV equilibrium withthe largest eigenvalue 0.8617. The top 
hart in Figure shows that the output gaps inthe �rst regime display persistent and large �u
tuations relative to their paths in these
ond regime. It is well known that the 
onstant-parameter New-Keynesian modelof this type is in
apable of generating mu
h of the di�eren
e in output volatility be-tween the two regimes. This is 
ertainly true for the equilibrium with the largesteigenvalue 0.7225. When taking regime swit
hing into a

ount, we have two MSVequilibria and the di�eren
e in output dynami
s between two regimes shows up inone of the equilibria.When we restri
t 
hanges to the poli
y 
oe�
ient γ1 only, the results are very sim-ilar to the �rst s
enario, implying it is the 
hange in poli
y a
ross regimes that 
ausesma
roe
onomi
 dynami
s to be di�erent a
ross regimes. For this poli
y-
hange-onlys
enario, we have two MSV equilibria, one with the largest eigenvalue of the matrix(14) being 0.8947 and the other equilibrium with 0.6972. The se
ond 
hart fromthe top in Figure 1 report the dynami
s of output in the MSV equilibrium with thelargest eigenvalue 0.6972. As one 
an see, the volatility in output is similar a
ross6Sims and Zha 2006 �nd that di�eren
es in the sho
k standard deviation a
ross regimes 
an beon the s
ale of as high as 10− 12 times. One 
ould also de
rease the di�eren
e in σD and in
reasethe di�eren
e in σS or experiment with di�erent 
ombinations. Our result that 
hanges in varian
esmatter a great deal will hold.



MSV SOLUTIONS TO MSRE MODELS 19the two regimes. In summary, the top two 
harts in Figure 1 demonstrate that one
an obtain ri
h dynami
s from di�erent MSV equilibria. Thus, it is important thata method be 
apable of �nding all MSV equilibria if one would like to 
onfront themodel with the data.When we allow only varian
es to 
hange (the third s
enario), there is a uniqueMSV equilibrium. The solution to this model is obtained by using the standardsolution method of Sims (2002) be
ause Et−1εi,t = 0 for i ∈ {R,D, S} even thoughtheir varian
es swit
h regime and be
ause the uniqueness of a solution depends onlyon the parameters that are time invariant. As one 
an see from the third 
hart inFigure 1, the volatility of output in the �rst regime is distin
tly larger than that inthe se
ond regime. The di�eren
e in volatility of output a
ross regimes disappears inthe private-se
tor-
hange-only s
enario (the fourth s
enario), as shown in the bottom
hart of Figure 1.Figures 2-3 display the simulated dynami
s of the interest rate and in�ation forthe four s
enarios. In all s
enarios, both in�ation and the interest rate in the �rstregime display persistent and large �u
tuations relative to their paths in the se
ondregime. The degree of persisten
e and volatility in these variables in the �rst regimein
reases with persisten
e of the sho
k zD,t or zS,t and with the size of sho
k varian
e
σD,t or σSt

. Our �nal s
enario is parti
ularly interesting be
ause, as illustrated bythe bottom 
harts of Figures 2-3, even if there is no 
hange in poli
y and in sho
kvarian
es, in�ation and the interest rate 
an have mu
h larger �u
tuations in the �rstregime than in the se
ond regime when the parameters of the private se
tor equationsare allowed to 
hange a
ross regimes.These examples tea
h us that the sharply di�erent dynami
s in output, the interestrate, and in�ation observed before and after 1980 
ould potentially be attributed todi�erent sour
es. The methods we have developed here give resear
hers the tools toaddress this and other issues in a regime-swit
hing rational expe
tations in whi
hrational agents take into a

ount the probability of regime 
hange when forming theirexpe
tations. VII. Con
lusionWe have developed a new approa
h to solving a general 
lass of MSRE models.The algorithm we have developed has proven e�
ient and reliable in 
omparison tothe previous methods. We have shown that MSV equilibria 
an be 
hara
terized as ave
tor-autoregression with regime swit
hing, of the kind studied by Hamilton (1989)



MSV SOLUTIONS TO MSRE MODELS 20and Sims and Zha (2006). Our new method provides tools ne
essary for resear
hersto solve and estimate a variety of regime-swit
hing DSGE models.



MSV SOLUTIONS TO MSRE MODELS 21Table 1. Model 
oe�
ients (original)Stru
tural EquationsParameter τ κ β γ1 γ2First regime 0.69 0.77 0.997 0.77 0.17Se
ond regime 0.54 0.58 0.993 2.19 0.30Table 2. Sho
k varian
es (original)Sho
k Pro
essesParameter ρD ρS ρR σD σS σRFirst regime 0.68 0.82 0.60 0.27 0.87 0.23Se
ond regime 0.83 0.85 0.84 0.18 0.37 0.18Table 3. Model 
oe�
ients (poli
y 
hange only)Stru
tural EquationsParameter τ κ β γ1 γ2First regime 0.6137 0.6750 0.9949 0.77 0.235Se
ond regime 0.6137 0.6750 0.9949 2.19 0.235Table 4. Sho
k varian
es (poli
y 
hange only)Sho
k Pro
essesParameter ρD ρS ρR σD σS σRFirst regime 0.755 0.835 0.72 0.225 0.6206 0.205Se
ond regime 0.755 0.835 0.72 0.225 0.6206 0.205



MSV SOLUTIONS TO MSRE MODELS 22Table 5. Model 
oe�
ients (varian
e 
hange only)Stru
tural EquationsParameter τ κ β γ1 γ2First regime 0.6137 0.6750 0.9949 2.19 0.235Se
ond regime 0.6137 0.6750 0.9949 2.19 0.235Table 6. Sho
k varian
es (varian
e 
hange only)Sho
k Pro
essesParameter ρD ρS ρR σD σS σRFirst regime 0.755 0.835 0.72 0.225 0.3712 0.205Se
ond regime 0.755 0.835 0.72 1.125 0.3712 0.205Table 7. Model 
oe�
ients (private se
tor 
hange only)Stru
tural EquationsParameter τ κ β γ1 γ2First regime 0.0614 0.6750 0.9949 2.19 0.235Se
ond regime 0.6137 0.6750 0.9949 2.19 0.235Table 8. Sho
k varian
es (private se
tor 
hange only)Sho
k Pro
essesParameter ρD ρS ρR σD σS σRFirst regime 0.755 0.835 0.72 0.225 0.6206 0.205Se
ond regime 0.755 0.835 0.72 0.225 0.6206 0.205
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Private sector change onlyFigure 1. Simulated output gap paths from our regime-swit
hing for-ward looking model. The shaded area represents the �rst regime.
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MSV SOLUTIONS TO MSRE MODELS 26Appendix A. Proof of Theorem 1Let {xt, ηt}∞t=1 be anMSV solution of Equation (1). Denote the span of this solution,
onditional on st = i, by V̂i and let Vi be any n× (n− ℓ) matrix whose 
olumns forma basis for V̂i. Applying the Et−1 [·|st = i] operator to Equation (1) gives
A(i)Et−1 [xt|st = i] = B(i)xt−1 +ΠEt−1 [ηt|st = i] . (A1)This implies that for 1 ≤ j ≤ h, every element of B(i)Vj is a linear 
ombination ofthe 
olumns of the matrix [A(i)Vi Π

]. Thus there exist (n − ℓ)× (n − ℓ) matri
es
F1,i,j and ℓ× (n− ℓ) matri
es F2,i,j su
h that

[

A(i)Vi Π
]

[

F1,i,j

F2,i,j

]

= B(i)Vj. (A2)Furthermore, sin
e
h
∑

i=1

pi,st−1
A(i)Et−1 [xt|st = i] =

h
∑

i=1

pi,st−1
(B(i)xt−1 +ΠEt−1 [ηt|st = i])

=
h
∑

i=1

pi,st−1
B(i)xt−1 +ΠEt−1 [ηt]

=
h
∑

i=1

pi,st−1
B(i)xt−1and Π is of full 
olumn rank, we 
an 
hoose the F1,i,j and F2,i,j so that

h
∑

i=1

pi,jF2,i,j = 0ℓ,n−ℓ.Subtra
ting Equation (A1) from Equation (1) gives
A(i) (xt − Et−1 [xt|st = i]) = Ψ(i)εt +Π (ηt − Et−1 [ηt|st = i]) .This implies that there exist (n − ℓ) × k matri
es G1,i and ℓ × k matri
es G2,i su
hthat

[

A(i)Vi Π
]

[

G1,i

G2,i

]

= Ψ(i). (A3)Let V ∗

i denote the generalized inverse of Vi and de�ne
x̂t = VstF1,st,st−1

V ∗

st−1
x̂t−1 + VstG1,stεt−1,

η̂t = −
(

F2,st,st−1
V ∗

st−1
x̂t−1 +G2,stεt−1

)

.This will also be a solution of Equation (1) whose span, 
onditional on st = i, is V̂i.This 
an be veri�ed by dire
t substitution using Equations (A2) and (A3) and the
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t that Vst−1
V ∗

st−1
x̂t−1 = x̂t−1. Sin
e {xt, ηt}

∞

t=1 is an MSV solution, it must be the
ase that x̂t = xt and η̂t = ηt.Finally, [A(i)Vi Π
] must be invertible be
ause otherwise we would have multiplesolutions with the same 
onditional span. So, de�ne

[

F1,i

F2,i

]

=
[

A(i)Vi Π
]

−1

B(i).It is easy to see that F1,iVj = F1,i,j and F2,iVj = F2,i,j . Thus
(

h
∑

i=1

pi,jF2,i

)

Vj = 0ℓ,n−ℓ,and
xt = VstF1,stxt−1 + VstG1,stεt−1,

ηt = − (F2,stxt−1 +G2,stεt−1) .Appendix B. Singular A(i)Using the notation of Se
tion II, we know that
A(i)Vi =

[

In−ℓ

−Xi

]

. (A4)If A(i) were non-singular, then Equation (A4) is easily solved and the results ofSe
tion II follow. We now 
onsider the 
ase in whi
h A(i) may be singular. We 
anuse the QR de
omposition to �nd an invertible matrix Ui su
h that A(i)Ui is of theform
[

In−ℓ 0n−ℓ,ℓ

C1,i C2,i

]

.If the QR de
omposition of A(i)′ is
A(i)′ = QiRi = Qi

[

Ri,1 Ri,2

0ℓ,n−ℓ Ri,3

]

,then
Ui = Qi

[

(

R′

i,1

)

−1
0n−ℓ,ℓ

0ℓ,n−ℓ Iℓ

]

,is the required matrix. If Ri,1 were not invertible, then a1(i), the upper blo
k of
A(i), would not be of full row rank. This would imply an a

ounting identity exists,at least for this regime, among the endogenous and predetermined 
omponents. Ifthis identity held a
ross all regimes, whi
h is the likely 
ase, then the number of



MSV SOLUTIONS TO MSRE MODELS 28endogenous and predetermined variables 
ould be redu
ed and the te
hnique 
ouldpro
eed. Equation (A4) implies that
U−1
i Vi =

[

In−ℓ

−Zi

]for some ℓ × n − ℓ matrix Zi and that Xi = Ci,2Zi − Ci,1. Substituting this intoEquation (9), we obtain
h
∑

i=1

pij

[

Ci,2Zi − Ci,1 Iℓ

]

B(i)Uj

[

In−ℓ

−Zj

]

= 0ℓ,n−ℓ.Let Z = (Z1, · · · , Zh), de�ne gj to be the fun
tion from R
hℓ(n−ℓ) to R

ℓ(n−ℓ) given by
gj (Z) =

h
∑

i=1

pij

[

Ci,2Zi − Ci,1 Iℓ

]

B(i)Uj

[

In−ℓ

−Zj

]

= 0ℓ,n−ℓ,and g to be the fun
tion from R
hℓ(n−ℓ) to R

hℓ(n−ℓ) given by
g (Z) = (g1 (Z) , · · · , gh (Z)) .We now have the following algorithm for �nding MSV solutions.Algorithm 3. Let Z(1) =
(

Z
(1)
1 , · · · , Z

(1)
h

) be an initial guess. If the kth iteration is
Z(k) =

(

Z
(k)
1 , · · · , Z

(k)
h

), then the (k + 1)th iteration is given by
vec
(

Z(k+1
)

= vec
(

Z(k)
)

− g′
(

Z(k)
)−1

vec
(

g
(

Z(k)
))

.where
g′ (X) =









∂g1
∂Z1

(Z) · · · ∂g1
∂Zh

(Z)... . . . ...
∂gh
∂Z1

(Z) · · · ∂gh
∂Zh

(Z)









.The sequen
e Z(k) 
onverges to a root of g(Z).As before, it is straightforward to verify that for i 6= j,
∂gj
∂Zi

(Z) = pij

(

[

In−ℓ 0n−ℓ,ℓ

]

B(i)Uj

[

In−ℓ

−Zj

])

′

⊗ Ci,1and for i = j,
∂gj
∂Zj

(Z) = pjj

(

[

In−ℓ 0n−ℓ,ℓ

]

B(j)Uj

[

In−ℓ

−Zj

])

′

⊗ Cj,1

+ In−ℓ ⊗

(

h
∑

k=1

pkj

[

Ck,1Zk + Ck2 Iℓ

]

B(k)Uj

[

0n−ℓ,ℓ

−Iℓ

])

.
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