
MINIMAL STATE VARIABLE SOLUTIONS TOMARKOV-SWITCHING RATIONAL EXPECTATIONS MODELSROGER E. A. FARMER AND DANIEL F. WAGGONER AND TAO ZHAAbstrat. We develop a new method for deriving minimal state variable (MSV)equilibria of a general lass of Markov swithing rational expetations models anda new algorithm for omputing these equilibria. We ompare our approah to pre-viously known algorithms, and we demonstrate that ours is both e�ient and morereliable than previous methods in the sense that it is able to �nd MSV equilibriathat previously known algorithms annot. Further, our algorithm an �nd all pos-sible MSV equilibria in models. This feature is essential if one is interested in usinga likelihood based approah to estimation.
I. IntrodutionFor at least twenty �ve years, eonomists have estimated strutural models withonstant parameters using U.S. and international data. Experiene has taught usthat some parameters in these models are unstable and a natural explanation forthe failure of the parameter onstany assumption is that the world is hanging.There are ompeting explanations for the soure of parameter hange that inludeabrupt breaks in the variane of strutural shoks (Stok and Watson, 2003; Simsand Zha, 2006; Justiniano and Primieri, 2008), breaks in the parameters of theprivate setor equations due to �nanial innovation (Bernanke, Gertler, and Gilhrist,1999; Christiano, Motto, and Rostagno, 2008; Gertler and Kiyotaki, 2010), or breaksin the parameters of monetary and �sal poliy rules (Clarida, Galí, and Gertler,2000; Lubik and Shorfheide, 2004; Davig and Leeper, 2007; Fernandez-Villaverde andRubio-Ramirez, 2008; Christiano, Eihenbaum, and Rebelo, 2009). Markov-swithingrational expetations (MSRE) models an apture the fat that the struture of theeonomy hanges over time.Date: February 3, 2011.Key words and phrases. Multiple MSV equilibria, poliy hanges, likelihood priniple, quadratipolynomial, E-stability, iterative algorithm.This researh was supported by NSF grant. We thank two referees and Mihel Juillard for manythoughtful omments and Junior Maih for helpful disussions. The views expressed herein do notneessarily re�et those of the Federal Reserve Bank of Atlanta or the Federal Reserve System.1



MSV SOLUTIONS TO MSRE MODELS 2Cogley and Sargent (2005a)'s estimates of random oe�ient models suggest thatwhen parameters hange, they move around in a low dimensional subspae; that is,although all of the parameters of a VAR may hange � they hange together. Thisis preisely what one would expet if parameter hange were due to movements in asmall subset of parameters of a strutural rational expetations model. Although thisphenomenon an be e�etively modeled as a disrete Markov proess, Sims (1982)and Cooley, LeRoy, and Raymon (1984) pointed out some time ago that a rationalexpetations model should take aount of the fat that agents will at di�erently ifthey are aware of the possibility of regime hange.In a related paper (Farmer, Waggoner, and Zha, 2009), we show that equilibria ofMSRE models are of two types; minimal state variable (MSV) equilibria and non-fundamental equilibria. Non-fundamental equilibria may or may not exist. If a non-fundamental equilibrium exists, it is the sum of an MSV equilibrium and a seondarystohasti proess. Our innovation in this paper is to develop an e�ient methodfor �nding MSV equilibria in a general lass of MSRE models, inluding those withlagged state variables. Given the set of MSV equilibria, our earlier paper (Farmer,Waggoner, and Zha, 2009) shows how to onstrut non-fundamental equilibria.Previous authors, notably Leeper and Zha (2003), Svensson and Williams (2005),Davig and Leeper (2007), and Farmer, Waggoner, and Zha (2008) have made someprogress in developing methods to solve for the equilibria of MSRE models. But thetehniques developed to date are not apable of �nding all of the equilibria in a generallass of MSRE models. We illustrate this point with an example. We use a simplerational expetations model to illustrate why previous approahes (inluding our own)may not �nd an MSV equilibrium, and in the ase of multiple MSV equilibria, anat best �nd only one MSV equilibrium. In ontrast, we show that our new methodis able to �nd all MSV equilibria. The algorithm we develop is shown to be fast ande�ient.
II. Minimal state variable solutionsA general lass of MSRE models studied in the literature has the following form:
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MSV SOLUTIONS TO MSRE MODELS 3where xt is an n×1 vetor of endogenous and predetermined variables, a1, a2, b1, b2, ψ1, ψ2, π1,and π2 are onformable parameter matries, εt is a k×1 vetor of i.i.d. stationary ex-ogenous shoks, and ηt is an ℓ×1 vetor of expetational errors. The variable st is anexogenous stohasti proess following an h-regime Markov hain, where st ∈ {1, ...h}with transition matrix P = [pij] de�ned as
pij = Pr(st = i | st−1 = j).Beause the vetor ηt is a mean zero endogenous stohasti proess and we impliitlyassume that Πst is of full rank, without loss of generality we let π1 (st) = 0, π2 (st) = Iℓ,

ψ1 (st) = ψ (st), and ψ2 (st) = 0, where Iℓ is the ℓ× ℓ identity matrix.In most appliations, xt is partitioned as
x′t =

[

y′t z′t Ety
′

t+1

]

, (2)where the �rst pair [y′t z′t] is of dimension n− ℓ and the seond blok of Equation (1)is of the form yt = Et−1yt + ηt. The vetor yt is the endogenous omponent and zt isthe predetermined omponent onsisting of lagged and exogenous variables. In thisase, the endogenous shoks ηt an be interpreted as expetational errors. Regime-swithing onstant terms an be enoded by introduing a dummy variable zc,t as anelement of the vetor zt together with the additional equation zc,t = zc,t−1, subjet tothe initial ondition zc,0 = 1. While this addition introdues a unit eigenvalue into thesystem, the solution tehniques developed in this paper are not a�eted beause thedummy variable is just a onstant term and the stationarity of the system is intat.In Farmer, Waggoner, and Zha (2009), we develop a set of neessary and su�-ient onditions for equilibria to be determinate in a lass of forward-looking MSREmodels. We show in that paper that every solution of an MSRE model, inludingan indeterminate equilibrium, an be written as the sum of an MSV solution and aseondary stohasti proess (i.e., the sunspot omponent). For models with laggedstate variables, the most hallenging task is to �nd all MSV equilibria; this taskhas not been suessfully aomplished in the literature. One an MSV equilibriumis found, the seondary stohasti proess is straightforward to obtain, as shown inFarmer, Waggoner, and Zha (2009).To give a preise desription of an MSV equilibrium in an MSRE model, we �rstonsider the onstant parameter ase, a speial ase of the Markov-swithing system



MSV SOLUTIONS TO MSRE MODELS 4given by (1), whih we represent as follows,
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. (3)There are a variety of tehniques to solve this system and the general solution is ofthe form

xt = Γxt−1 + Ξ1εt + Ξ2γt, (4)where the mean-zero random proess γt, if present, is a sunspot omponent. Forexpositional larity, let us assume that A is invertible. The matries Γ, Ξ1, and Ξ2an be obtained from the real Shur deomposition of A−1B = UTU ′. The matrix
U is orthogonal and T is blok upper triangular with 1 × 1 and 2 × 2 bloks alongits diagonal. The 1× 1 bloks orrespond to real eigenvalues of A−1B and the 2× 2bloks orrespond to onjugate pairs of omplex eigenvalues of A−1B. The real Shurdeomposition is unique up to the ordering of the eigenvalues along the blok diagonalof T . If we partition U as U = [V V̂ ], then the Shur deomposition an be writtenas
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.If we de�ne Γ = V T11V
′, Ξ1 = V G1, and Ξ2 = V N1, where G1 and N1 are solutionsof the matrix equations
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= Ψ and [AV Π
]
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= 0,then Equation (4) will de�ne a solution of the system given by (3). This is straightforward to verify by multiplying Equation (4) by A and then transforming the righthand side using the de�nitions of Γ, Ξ1, and Ξ2, the fat that xt is in the olumnspae of V , the identity A−1BV = ΓV and the impliit de�nition ηt = −G2εt−N2γt.Furthermore, any solution will orrespond to some ordering of the eigenvalues A−1Band a partition of U . Sine we require solutions to be stable,1 all the eigenvalues of
T11 must lie inside the unit irle.The �rst requirement of an MSV solution is that it be fundamental, i.e. it annotontain a sunspot omponent. This implies that N1 must be zero or equivalentlythat [AV Π] must be of full olumn rank. The seond requirement is that if xtis deomposed as an endogenous omponent, a predetermined omponent, and an1For onstant parameter systems suh (3), stable and bounded are equivalent requirements, butnot so for the time varying systems suh as (1).



MSV SOLUTIONS TO MSRE MODELS 5expetations omponent as in Equation (2), then no restritions should be plaedon the �data�, whih orresponds to the endogenous and predetermined omponents.This implies that the number of olumns in V must be n − ℓ and that [AV Π] beinvertible.We an use these ideas to formalize what we mean by an MSV equilibrium. First,note that the olumn spae of V is the span of solution xt in the sense that supportof the random proess xt is ontained in and spans the olumn spae of V . A solutionof the system (3) is an MSV solution if and only if it is the unique solution on itsspan and there are no restritions on the endogenous and predetermined variables ytand zt. On the span Etyt+1 is a funtion of yt and zt. These ideas an be expandedto the Markov swithing system given by (1) and (2). In this ontext, the relevantonept is not the span of the solution, but the onditional span. The span of thesolution xt onditional on st = i is the span of the support of the random proess xtgiven st = i.De�nition 1. A stable solution of the system given by (1) and (2) is a minimal statevariable solution if and only if it is unique given all the onditional spans and none ofthe onditional spans impose a relationship among the endogenous and predeterminedomponents yt and zt.Unlike the onstant parameter ase, one an no longer apply an eigenvalue on-dition used to identify all andidates for the onditional spans. One an, however,use iterative tehniques to onstrut MSV equilibria. Our approah builds on thefollowing theorem.Theorem 1. If {xt, ηt}∞t=1 is an MSV solution of the system (1), then
xt = VstF1,stxt−1 + VstG1,stεt, (5)
ηt = − (F2,stxt−1 +G2,stεt) , (6)where the matrix [A(i)Vi Π
] is invertible and
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Vj = 0ℓ,n−ℓ, for 1 ≤ j ≤ h. (9)



MSV SOLUTIONS TO MSRE MODELS 6The dimension of Vi is n× (n− ℓ), F1,i is (n− ℓ)×n, F2,i is ℓ×n, G1,i is (n− ℓ)×k,and G2,i is ℓ× k.To �nd an MSV equilibrium, we must �nd matries Vi suh that [A(i)Vi Π] isinvertible and Equation (9) holds where F2,i is de�ned via Equation (7). Sine Π =

[0ℓ,n−ℓ Iℓ]
′, the matrix [A(i)Vi Π] is invertible if and only if the upper (n−ℓ)×(n−ℓ)blok of A(i)Vi is invertible. It is easy to see that multiplying Vi on the right by aninvertible matrix, and hene multiplying F1,i and G1,i on the left by the inverse of thismatrix, will not hange equations (5) through (9). Thus, without loss of generality,we assume that
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= 0ℓ,n−ℓ. (11)In the previous derivation, we assume that A(i) is invertible for expositional larity.In Appendix B, we remove this assumption and show that our iterative algorithmworks even if A(i) is not invertible.The advantage of our method is that we are able to redue the task of �nding anMSV solution to that of omputing the roots of a quadrati polynomial in severalvariables. We exploit Newton's method to ompute these roots. This has the ad-vantage over previously suggested methods of being fast and loally stable aroundany given solution. This property guarantees that by hoosing a large enough gridof initial onditions we will �nd all possible MSV solutions. This loal onvergeneproperty does not hold for iterative solutions that have previously been suggested inthe literature.Let X = (X1, · · · , Xh), de�ne fj to be the funtion from R
hℓ(n−ℓ) to R
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MSV SOLUTIONS TO MSRE MODELS 7The quadrati polynomial equations, f(X) = 0, are the same as the onstraintsrepresented by (9).Thus, �nding an MSV equilibrium is equivalent to �nding the roots of f (X) andTheorem 1 suggests the following onstrutive algorithm for �nding MSV solutions.Algorithm 1. Let X(1) =
(
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(
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(
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.The sequene X(k) onverges to a root of f(X).It is straightforward to verify that for i 6= j,
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.In a series of omputational experiments, reported below, we have found that thisalgorithm is relatively fast and that it onverges to multiple solutions, when theyexist, for a suitable hoie of initial onditions.One an MSV equilibrium is obtained, one an verify whether this solution isstationary (mean-square-stable) in the sense of Costa, Fragoso, and Marques (2004,page 36). Let Γj = VjA(j) for j = 1, . . . , h. As shown in Costa, Fragoso, andMarques (2004, Proposition 3.9, p. 36 and Proposition 3.33, p.49), an MSV solutionis stationary if and only if the eigenvalues of
(P ⊗ In2) diag [Γ1 ⊗ Γ1, . . . ,Γh ⊗ Γh] , (14)are all inside the unit irle.In Setion IV, we present simple examples in whih existing algorithms, that havebeen proposed in the literature, break down. We also show that when there are



MSV SOLUTIONS TO MSRE MODELS 8multiple MSV equilibria, existing algorithms an at best �nd only one equilibriumand sometimes do not onverge to any MSV equilibrium even when the initial startingpoint is lose to the equilibrium. This result is unsatisfatory beause researhersshould be able to estimate models by searhing aross the spae of all equilibria andseleting the one that maximizes the posterior odds ratios. In all the examples westudy, our algorithm is apable of �nding all MSV equilibria by randomly hoosingdi�erent initial points. III. Previous approahesTwo existing algorithms have been frequently used to �nd an MSV equilibrium ina MSRE model: the �xed-point (FP) algorithm developed in a previous version ofthis paper (Farmer, Waggoner, and Zha (2008)) and the iterative algorithm proposedby Svensson and Williams (2005). We review these algorithms in this setion and inSetion IVwe disuss why they do not always work well in pratie.III.1. The FP algorithm. To apply the FP algorithm, Farmer, Waggoner, and Zha(2008) show how to de�ne an expanded state vetor x̃t. Using their de�nition, onean write the Markov swithing equations as a onstant parameter system of the form
Ãx̃t = B̃x̃t−1 + Ψ̃ũt + Π̃ηt, (15)where x̃t ∈ Rnh has dimension nh× 1.To write system 1 in this form, de�ne a family of matries {φi}

h
i=1 where h is thenumber of Markov states and eah φi has dimension ℓ× n with full row rank. De�ne

ej as a olumn vetor equal to 1 in the jth element and zero everywhere else and thematrix Φ as
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. (16)Let the matries Ã, B̃, and Π̃ be given by
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Π̃

nh×ℓ
=
[

0, Iℓ, 0
]

′

.To de�ne ũt and the orresponding oe�ient matrix Ψ̃, let 1h be the h-dimensionalolumn vetor of ones and let
Si

(n−ℓ)h×nh

= (diag [b1 (1) , · · · , b1 (h)])× [(ei1
′

h − P )⊗ In] ,for i = 1. . . . , h. With this notation, we have
ũt =
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(
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⊗ (1′

h ⊗ In) x̃t−1

)
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]

,and
Ψ̃

nh×(k+n−ℓ)h
=







I(n−ℓ)h diag (ψ (1) , · · · , ψ (h))

0 0

0 0






.It is straightforward to show that Et−1 [ut] = 0. Thus, (15) is a linear system ofrational expetations equations and the solution of this linear system an be omputedby known methods. Farmer, Waggoner, and Zha (2008), show that a solution of theexpanded system (15) with the initial onditions x0 and x̃0 = e

′

s0
⊗x0 is a solution ofthe original nonlinear system. The vetors xt and x̃t are related by the expression,

xt =
(

e
′

st
⊗ In

)

x̃t. (17)Although (3) is a linear rational expetations system, �nding {φ1, φ2, ...φh} for thislinear system is a �xed-point problem of a system of nonlinear equations. Farmer,Waggoner, and Zha (2008) propose the following algorithm. Let the supersript
(n) denote the nth step of an iterative proedure. Beginning with a set of initialmatries {φ(0)

i

}h

i=2
, de�ne Φ(0) using Equation (16) and generate the assoiated matrix

A(0). Next, ompute the QZ deomposition of {A(0), B
} and denote the generalizedeigenvalues orresponding the unstable roots by Z(0)

u =
[

z
(0)
1 , . . . , z

(0)
h

], where z(0)i isan ℓ × n matrix. Finally, set φ(1)
i = z

(0)
i . Form this new set of values of φi's, forma new matrix A(1). Repeat this algorithm and, if it onverges, the system (15) willgenerate sequenes {xt, ηt}

∞

t=1 that are onsistent with the system (1), where xt isgoverned by (17).The quali�ation if it onverges is ruial beause, as we will show in Setion IV,it may not onverge even in the simplest rational expetations model.



MSV SOLUTIONS TO MSRE MODELS 10III.2. The SW algorithm. In this subsetion we desribe the algorithm developedby Svensson and Williams (2005). As we exhaust many ommonly used mathematialsymbols for matries and vetors, we will use the same notation for some variablesand parameters as in Setion III.1 as long as this double use of the notation does notause onfusion.Svensson and Williams (2005)'s algorithm is an iterative approah to solving ageneral Markov-swithing system. The system is written as
Xt = A11,stXt−1 + A12,stxt−1 + Cstǫt, (18)
EtHst+1

xt+1 = A21,stXt + A22,stxt, (19)where Xt is an nX × 1 vetor of predetermined variables, xt is an nx × 1 vetor offorward-looking variables, and st. The MSV solution takes the following form:
xt = GstXt.The algorithm works as follows.(1) Start with an initial guess of G(0)

j , where st = j.(2) For n = 0, 1, 2, . . . , iterate the value of G(n+1)
j aording to

G
(n+1)
j =

[

A22,j −
∑

k

PkjHkG
(n)
k A12,k

]

−1 [
∑

k

PkjHkG
(n)
k A11,k − A21,j

]

. (20)This algorithm is both elegant and e�ient and an handle a large system. If itonverges to an MSV solution, the onvergene is fast. As we show below, however,the algorithm may not onverge even if there is an MSV equilibrium.IV. Comparison of our algorithm with alternativesIn this setion we illustrate the properties of di�erent methods using three simpleexamples based on the following model:
φstπt = Etπt+1 + δstπt−1 + βstrt,

rt = ρstrt−1 + ǫt,where st = 1, 2 takes one of two disrete values aording to the Markov-swithingproess. If we interpret πt as in�ation and rt as an exogenous shok to inome orpreferenes, this equation an be derived diretly from the onsumer's optimizationproblem together with a monetary poliy rule that moves the interest rate in responseto urrent and past in�ation rates (see Liu, Waggoner, and Zha (2009)).



MSV SOLUTIONS TO MSRE MODELS 11IV.1. An example with a unique MSV equilibrium. We set δst = 0, βst = β =

1, and ρst = ρ = 0.9 for all values of st, φ1 = 0.5, φ2 = 0.8, p11 = 0.8, and p22 = 0.9.One an show that for this parameterization (i.e., δst = 0), there is a unique MSVequilibrium.2 The MSV solution has a losed form given by the expression,
πt = g1,strt−1 + g2,stǫt,where

[

g1,1

g1,2

]

=

[

p11ρ− φ1 p21ρ

p12ρ p22ρ− φ2

]

−1 [

βρ

βρ

]

,

g2,st =
p1stg1,1 + P2stg1,2 + β

φst

.In experiments based on this example, our algorithm onverged quikly to thefollowing MSV equilibrium for all initial onditions,
πt = −10.9285rt−1 − 12.1428ǫt, for st = 1,

πt = 8.3571rt−1 + 9.2857ǫt, for st = 2.Using (14), one an easily verify that this equilibrium is mean square stable.Both the FP or the SW algorithms, however, are unstable when applied to thisexample. To gain an intuition of why these previous algorithms do not work, we mapthis example to the notation of the SW algorithm desribed in Setion III.2:
Hk = 1, nX = nx = 1, Xt = rt, xt = πt, A11,k = ρ, A12,k = 0, A21,j = −β,A22,j = φj.For expositional larity, we further simplify the model by assuming that φ1 = φ2 =

φ = 0.85. The MSV equilibrium for this ase an be haraterized as
πt = g1rt−1 + g2εt,where g1 = βρ

φ−ρ
. It follows from (20) that

g
(n)
1 =

(

g
(n−1)
1 + β

)

ρ

φ
.The above iterative algorithm also haraterizes the FP algorithm. Sine the MSVsolution g1 is great than 1 in absolute value and ρ/φ > 1 in this ase, g(n)1 will goto either plus in�nity or minus in�nity (depending on the initial guess) as n → ∞.Thus, the FP and SW algorithms annot �nd the MSV equilibrium, even when thereis only a unique MSV equilibrium.2There also exists a ontinuum of non-fundamental equilibria around the unique MSV solution.



MSV SOLUTIONS TO MSRE MODELS 12IV.2. An example with two MSV equilibria. We now provide an example wherethere are multiple MSV equilibria, but the SW algorithm an �nd only one of the twoMSV equilibria and the FP algorithm annot onverge at all. In ontrast, our pro-posed algorithm onverges to all of the MSV equilibria by randomly seleting di�erentsets of initial guesses. The example has the following parameter on�guration:
φ1 = 0.5, φ2 = 0.8, δ1 = −0.7, δ2 = 0.4,

β1 = β2 = 1, ρ1 = ρ2 = 0, p11 = 1.0, p22 = 0.64.One an easily verify that the �rst regime, taken in isolation, is determinate while theseond regime is indeterminate. We hoose this example to show that even thoughthe �rst regime is an absorbing state beause p11 = 1.0, the MSV equilibrium inthe regime-swithing environment is not unique. To see this point learly, note thatthe MSV solution takes the form πt = g1,stπt−1 + g2,stǫt with two distint stationaryequilibria:
g1,1 = −0.623212, g1,2 = 0.675998, �rst MSV equilibrium;
g1,1 = −0.623212, g1,2 = 0.924559, seond MSV equilibrium;Note that the multiple equilibria our only in the seond regime. The equilibriumin the �rst regime is unique.The SW algorithm annot �nd the seond equilibrium; it onverges only to the �rstequilibrium. The FP algorithm fares worse. It annot onverge to either of the twoMSV equilibria.IV.3. An example with more than two MSV equilibria. We now provide anexample that a multipliity of MSV equilibria an exist. Both FP and SW algorithmsan �nd only one of them. The question is whether our proposed algorithm is apableof �nding all the solutions or only a subset of them.The example has the following parameter on�guration:

φ1 = 0.2, φ2 = 0.4, δ1 = −0.7, δ2 = −0.2,

β1 = β2 = 1, ρ1 = ρ2 = 0, p11 = 0.9, p22 = 0.8.



MSV SOLUTIONS TO MSRE MODELS 13An MSV equilibrium takes the form πt = g1,stπt−1 + g2,stǫt. For this example, thereare four stationary MSV equilibria given by
g1,1 = −0.765149, g1,2 = −0.262196, �rst MSV equilibrium;
g1,1 = 0.960307, g1,2 = 0.646576, seond MSV equilibrium;
g1,1 = −0.826316, g1,2 = 0.96551, third MSV equilibrium;
g1,1 = 1.024809, g1,2 = −0.392746, fourth MSV equilibrium.Our algorithm onverges rapidly to all the MSV solutions when we vary the initialguess randomly. In ontrast, both the FP and SW algorithms, no matter what theinitial guess (unless it is set exatly at an MSV solution), onverge to only the �rstMSV equilibrium reported above.Farmer, Waggoner, and Zha (2008) show an easy-to-hek ondition for the unique-ness of the equilibrium if it is found by the FP algorithm. This ondition applies onlyto a loal uniqueness and to the staked linear system 15. This loal results annot beextended to the original Markov-swithing system 1. Indeed, as this example shows,even the �rst MSV equilibrium is loally unique aording to Farmer, Waggoner, andZha (2008), there exist other MSV equilibria that are not in the neighborhood of the�rst equilibrium. Our new method is developed to �nd all possible MSV equilibria.V. A general strategy of seleting an equilibriumIn this setion we disuss a general strategy of seleting an equilibrium in thepresene of multiple MSV equilibria. We �rst provide details of our e�ient algorithmused for drawing initial guesses that over a wide range of values in order to �nd allthe MSV equilibria. After we have all the MSV equilibria in hand, we then proposea likelihood based riterion for seleting an MSV equilibrium while disussing otheralternative riteria.V.1. Initial values. Our new algorithm requires an initial guess in searh of anequilibrium. A brute fore approah is to simply use a large grid of initial valuesin a hope that di�erent initial values may lead to di�erent MSV equilibria. Thisapproah is not a problem for a theoretial paper whose purpose is to highlight keyproperties of a partiular model of interest. In an estimation exerise, however, thisapproah an beome extremely ine�ient when the size of a dynami stohastigeneral equilibrium (DSGE) model is large.



MSV SOLUTIONS TO MSRE MODELS 14Dan and Roger: please double hek the proposed algorithm. An e�ientapproah is to randomly sample initial values by exploring the theoretial propertiesof the MSV solution. From the solution (5) one an see that Vi is uniquely deter-mined only up to normalization disussed in Hamilton, Waggoner, and Zha (2007).Thus, we an always impose the restrition that the olumns of Vi be orthonormal.Theorem 9 in Rubio-Ramírez, Waggoner, and Zha (2010) gives an e�ient algorithmof implementing a random seletion of Vi. Spei�ally, let X̃i be an n × n randommatrix with eah element having an independent standard normal distribution; andlet X̃i = Q̃iR̃i be the QR deomposition of X̃i with the diagonal of R̃i normalized tobe positive. Then the �rst n− ℓ olumns of Q̃i form an independent random seletionof Vi. The following algorithm gives a systemati way of �nding all MSV equilibria.Algorithm 2. For eah independent seletion of Vi, we obtain the orrespondingrandom seletion of the initial value of Xi aording to (10).(Step 1) Randomly draw Ñ initial values of (X1, · · · , Xh).(Step 2) For eah initial value, apply apply Algorithm 1 to �nd an MSV equilibrium.(Step 3) Collet all MSV equilibria.(Step 4) Repeat Steps 1-3 with Ñ = 2 ∗ Ñ initial values.(Step 5) Compare all MSV equilibria in Step 4 to the previously obtained MSVequilibria.(Step 6) If they are the same, stop. If they are additional MSV equilibria found, gobak to Steps 4 and 5.Our experiene indiates that with the starting number Ñ = 20, it often takes nomore than three repetitions for Algorithm 2 to onverge.V.2. How to selet a partiular MSV equilibrium? One we obtain all MSVequilibria, a relevant question is: Whih equilibrium should be seleted? One answeris to follow the engineering literature (Costa, Fragoso, and Marques, 2004) and seletthe MSV equilibrium that is most stationary (i.e., the equilibrium with the smallestdominant eigenvalue (in absolute value) of the matrix (14)). The intuition is that thismost stationary is likely to be most �attrative� in the sense that most initial guesses of
X will onverge to this equilibrium. It turns out that this intuition is not always true.To see this point, we ondut a heuristi exerise by randomly seleting 1000 initialvalues ofX and tabulating the perentage in whih a partiular equilibrium the initialvalues onverge to. For the example disussed in Setion IV.2, the �rst equilibrium(with the dominant eigenvalue 0.388) reeives 73% and the seond equilibrium (withthe dominant eigenvalue 0.547) reeives 27%. For the example studied in Setion IV.3,



MSV SOLUTIONS TO MSRE MODELS 15the �rst and seond equilibria (with the dominant eigenvalues being 0.529 and 0.845respetively) share the highest perentage of onvergene and eah reeives 33%. Theseond highest perentage of onvergene, 26%, goes to the third equilibrium (with thedominant eigenvalue 0.811). The fourth equilibrium (with the dominant eigenvalue
0.949) has the lowest perentage of onvergene (8%). This example shows that a lessstationary equilibrium an have the highest degree of attration.A better argument for seleting the most stationary MSV equilibrium is o�eredby Ellison and Pearlman (Forthoming). They show that the most stationary MSVequilibrium is E-stable while other equilibria are not.3 This is a persuasive argumentfrom the view point of learning. For Markov-swithing rational expetations modelsthemselves, however, a more relevant question is based on the likelihood priniple:Whih equilibrium should be seleted onditional on the data we observe? This al-ternative question is important beause, ultimately, an equilibrium we selet oughtto explain the observed data.We propose the following likelihood based approah. For eah on�guration ofmodel parameters, we use Algorithms 1 and 2 to �nd all MSV equilibria. For eahequilibrium, we ompute the likelihood value reursively by following the method ofSims, Waggoner, and Zha (2008) (note that the prior density value is the same forall the equilibria). We ompare all the likelihood values and selet an equilibriumassoiated with the highest likelihood value. It is important to bear in mind thatfor a di�erent on�guration of model parameters due to parameter unertainty, thenature of the seleted equilibrium may be di�erent as well.VI. An appliation to a monetary poliy modelIn previous setions, we showed that the FP and SW algorithms may not onvergeto an MSV equilibrium and that if they onverge, they onverge to only one MSVequilibrium. In ontrast, our new algorithm, using Newton's method to omputeroots, is stable, e�ient, and reliable for �nding all MSV equilibria.In this setion we present simulation results based on a alibrated version of theNew-Keynesian model and we use it to study hanges in output, in�ation, and thenominal interest rate.Clarida, Galí, and Gertler (2000) and Lubik and Shorfheide (2004) argue thatthe large �utuations in output, in�ation, and interest rates are manifestations ofindeterminay indued by passive monetary poliy. Sims and Zha (2006), on the3Their theoretial results pertain only to a lass of rational expetations models without Markov-swithing parameters.



MSV SOLUTIONS TO MSRE MODELS 16other hand, �nd no evidene in favor of indeterminay when they allow monetarypoliy to swith regimes stohastially. Furthermore, they �nd that one the modelpermits time variation in disturbane varianes, there is no evidene in favor of poliyhanges at all (see also Cogley and Sargent (2005b) and Primieri (2005)).One it is known that poliy hanges might our, a rational agent should treatthese hanges probabilistially and the probability of a future poliy hange shouldenter into his urrent deisions. Previous work in this area has negleted these e�etsand all of the studies ited above study regime swithes in a purely redued formmodel. We show in this setion how to use the MSV solution to a MSRE model tostudy the e�ets of regime hange that is rationally antiipated to our. We usesimulation results to show that the persistene and volatility in in�ation and theinterest rate an be the result of (1) poliy hanges, (2) hanges in shok varianes,or (3) hanges in private setor parameters. Hene, our method provides a tool forempirial work, in whih a more formal analysis of the data an be used to disriminatebetween these ompeting explanations.Our regime-swithing poliy model, based on Lubik and Shorfheide (2004), hasthe following three strutural equations:
xt = Etxt+1 − τ(st)(Rt − Etπt+1) + zD,t, (21)

πt = β(st)Etπt+1 + κ(st)xt + zS,t, (22)
Rt = ρR(st)Rt−1 + (1− ρR(st)) [γ1(st)πt + γ2(st)xt] + ǫR,t, (23)where xt is the output gap at time t, πt is the in�ation rate, and Rt is the nominalinterest rate. Both πt and Rt are measured in terms of deviations from the steadystate.4 The oe�ient τ measures the intertemporal elastiity of substitution, β isthe household's disount fator, and the parameter κ re�ets the rigidity or stikinessof pries.The shoks to the onsumer and �rm's setors, zD,t and zS,t, are assumed to evolveaording to an AR(1) proess:
[

zD,t

zS,t

]

=

[

ρD(st) 0

0 ρS(st)

][

zD,t−1

zS,t−1

]

+

[

ǫD,t

ǫS,t

]

,where ǫD,t is the innovation to a demand shok, ǫS,t is an innovation to the supplyshok, and ǫR,t is a disturbane to the poliy rule. All these strutural shoks are4See Liu, Waggoner, and Zha (2009) for a proof that the steady state in this example does notdepend on regimes.



MSV SOLUTIONS TO MSRE MODELS 17i.i.d. and independent of one another. The standard deviations for these shoks are
σD(st), σS(st), and σR(st).Lubik and Shorfheide (2004) estimate a onstant-parameter version of this modelfor the two subsamples: 1960:I-1979:II and 1979:III-1997:IV. In our alibration weonsider two regimes. The parameters in the �rst regime orrespond to their estimatesfor the period 1960:I-1979:II and the parameters in the seond regime orrespond tothose for 1979:III-1997:IV. The alibrated values are reported in Tables 1 and 2. Thetransition matrix is alulated by mathing the average duration of the �rst regime tothe length of the �rst subsample and by assuming that the seond regime is absorbingto aommodate the belief that the pre-Volker regime will never return:5

P =

[

0.9872 0

0.0128 1

]

.A simple alulation veri�es that, if only one regime were allowed to exist (in thesense that a rational agent was ertain that no other poliy would ever be followed)the �rst regime would be indeterminate and the seond would be determinate. Whena rational agent forms expetations by taking aount of regime hanges, we needto know if there exist multiple MSV equilibria. In our omputations we apply ourmethod to this system with a large number of randomly seleted starting points andwe obtain multiple MSV solutions for some on�gurations of parameterization thatwe report below.This kind of forward-looking model provides a natural laboratory to experimentwith di�erent senarios in light of the debate on hanges in poliy or hanges in shokvarianes. The estimates provided by Lubik and Shorfheide (2004) and reported inTables 1 and 2 mix hanges in oe�ients related to monetary poliy with hanges inother parameters in the model, sine Lubik and Shorfheide (2004) do not aount forthe e�et of the probability of regime hange on the urrent behavior. One variationin the strutural parameter values is to let the oe�ient on the in�ation variable inthe poliy equation (23) hange while holding all the other parameters �xed arossthe two regimes. Tables 3 and 4 report the parameter values orresponding to thissenario, in whih all the other parameters take the average of the values in Tables 1and 2 over the two regimes. We all this senario �poliy hange only�.In a seond senario, �variane hange only�, we keep the value of the poliy oe�-ient γ1 at 2.19 for both regimes while letting the standard deviation σD in the �rst5One ould also math the average duration of the seond regime to the length of the seondsubsample, whih give p22 = 0.9865.



MSV SOLUTIONS TO MSRE MODELS 18regime be �ve times larger than that in the seond regime and keeping the value of
σS at 0.3712 for both regimes.6 The parameter values for this senario are reportedin Tables 5 and 6.The last senario we onsider allows only the parameters in the private setor tohange. We all it �private-setor hange only�. The idea is to study whether thepersistene and volatility in in�ation an be generated by hanges in the privatesetor in a forward-looking model. We let the oe�ient τ be 0.06137 in the �rstregime and 0.6137 in the seond regime. Tables 7 and 8 report the values of all theparameters for this senario. Similar results an be ahieved if one lets the value of
κ in the �rst regime be muh smaller than that in the seond regime.Using the method disussed in Setion II, we obtain two MSV equilibria that har-aterize the �rst two senarios and a unique MSV equilibrium for the last two se-narios. Figures 1-3 display simulated paths of the output gap, the interest rate, andin�ation under eah of these senarios. With the original estimates reported in Lubikand Shorfheide (2004), the largest eigenvalue for the matrix (14) is 0.8617 for oneequilibrium and 0.7225 for the other. The dynamis are quite di�erent for these twoMSV equilibria. We display the simulated data based on the MSV equilibrium withthe largest eigenvalue 0.8617. The top hart in Figure shows that the output gaps inthe �rst regime display persistent and large �utuations relative to their paths in theseond regime. It is well known that the onstant-parameter New-Keynesian modelof this type is inapable of generating muh of the di�erene in output volatility be-tween the two regimes. This is ertainly true for the equilibrium with the largesteigenvalue 0.7225. When taking regime swithing into aount, we have two MSVequilibria and the di�erene in output dynamis between two regimes shows up inone of the equilibria.When we restrit hanges to the poliy oe�ient γ1 only, the results are very sim-ilar to the �rst senario, implying it is the hange in poliy aross regimes that ausesmaroeonomi dynamis to be di�erent aross regimes. For this poliy-hange-onlysenario, we have two MSV equilibria, one with the largest eigenvalue of the matrix(14) being 0.8947 and the other equilibrium with 0.6972. The seond hart fromthe top in Figure 1 report the dynamis of output in the MSV equilibrium with thelargest eigenvalue 0.6972. As one an see, the volatility in output is similar aross6Sims and Zha 2006 �nd that di�erenes in the shok standard deviation aross regimes an beon the sale of as high as 10− 12 times. One ould also derease the di�erene in σD and inreasethe di�erene in σS or experiment with di�erent ombinations. Our result that hanges in varianesmatter a great deal will hold.



MSV SOLUTIONS TO MSRE MODELS 19the two regimes. In summary, the top two harts in Figure 1 demonstrate that onean obtain rih dynamis from di�erent MSV equilibria. Thus, it is important thata method be apable of �nding all MSV equilibria if one would like to onfront themodel with the data.When we allow only varianes to hange (the third senario), there is a uniqueMSV equilibrium. The solution to this model is obtained by using the standardsolution method of Sims (2002) beause Et−1εi,t = 0 for i ∈ {R,D, S} even thoughtheir varianes swith regime and beause the uniqueness of a solution depends onlyon the parameters that are time invariant. As one an see from the third hart inFigure 1, the volatility of output in the �rst regime is distintly larger than that inthe seond regime. The di�erene in volatility of output aross regimes disappears inthe private-setor-hange-only senario (the fourth senario), as shown in the bottomhart of Figure 1.Figures 2-3 display the simulated dynamis of the interest rate and in�ation forthe four senarios. In all senarios, both in�ation and the interest rate in the �rstregime display persistent and large �utuations relative to their paths in the seondregime. The degree of persistene and volatility in these variables in the �rst regimeinreases with persistene of the shok zD,t or zS,t and with the size of shok variane
σD,t or σSt

. Our �nal senario is partiularly interesting beause, as illustrated bythe bottom harts of Figures 2-3, even if there is no hange in poliy and in shokvarianes, in�ation and the interest rate an have muh larger �utuations in the �rstregime than in the seond regime when the parameters of the private setor equationsare allowed to hange aross regimes.These examples teah us that the sharply di�erent dynamis in output, the interestrate, and in�ation observed before and after 1980 ould potentially be attributed todi�erent soures. The methods we have developed here give researhers the tools toaddress this and other issues in a regime-swithing rational expetations in whihrational agents take into aount the probability of regime hange when forming theirexpetations. VII. ConlusionWe have developed a new approah to solving a general lass of MSRE models.The algorithm we have developed has proven e�ient and reliable in omparison tothe previous methods. We have shown that MSV equilibria an be haraterized as avetor-autoregression with regime swithing, of the kind studied by Hamilton (1989)



MSV SOLUTIONS TO MSRE MODELS 20and Sims and Zha (2006). Our new method provides tools neessary for researhersto solve and estimate a variety of regime-swithing DSGE models.



MSV SOLUTIONS TO MSRE MODELS 21Table 1. Model oe�ients (original)Strutural EquationsParameter τ κ β γ1 γ2First regime 0.69 0.77 0.997 0.77 0.17Seond regime 0.54 0.58 0.993 2.19 0.30Table 2. Shok varianes (original)Shok ProessesParameter ρD ρS ρR σD σS σRFirst regime 0.68 0.82 0.60 0.27 0.87 0.23Seond regime 0.83 0.85 0.84 0.18 0.37 0.18Table 3. Model oe�ients (poliy hange only)Strutural EquationsParameter τ κ β γ1 γ2First regime 0.6137 0.6750 0.9949 0.77 0.235Seond regime 0.6137 0.6750 0.9949 2.19 0.235Table 4. Shok varianes (poliy hange only)Shok ProessesParameter ρD ρS ρR σD σS σRFirst regime 0.755 0.835 0.72 0.225 0.6206 0.205Seond regime 0.755 0.835 0.72 0.225 0.6206 0.205



MSV SOLUTIONS TO MSRE MODELS 22Table 5. Model oe�ients (variane hange only)Strutural EquationsParameter τ κ β γ1 γ2First regime 0.6137 0.6750 0.9949 2.19 0.235Seond regime 0.6137 0.6750 0.9949 2.19 0.235Table 6. Shok varianes (variane hange only)Shok ProessesParameter ρD ρS ρR σD σS σRFirst regime 0.755 0.835 0.72 0.225 0.3712 0.205Seond regime 0.755 0.835 0.72 1.125 0.3712 0.205Table 7. Model oe�ients (private setor hange only)Strutural EquationsParameter τ κ β γ1 γ2First regime 0.0614 0.6750 0.9949 2.19 0.235Seond regime 0.6137 0.6750 0.9949 2.19 0.235Table 8. Shok varianes (private setor hange only)Shok ProessesParameter ρD ρS ρR σD σS σRFirst regime 0.755 0.835 0.72 0.225 0.6206 0.205Seond regime 0.755 0.835 0.72 0.225 0.6206 0.205
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MSV SOLUTIONS TO MSRE MODELS 26Appendix A. Proof of Theorem 1Let {xt, ηt}∞t=1 be anMSV solution of Equation (1). Denote the span of this solution,onditional on st = i, by V̂i and let Vi be any n× (n− ℓ) matrix whose olumns forma basis for V̂i. Applying the Et−1 [·|st = i] operator to Equation (1) gives
A(i)Et−1 [xt|st = i] = B(i)xt−1 +ΠEt−1 [ηt|st = i] . (A1)This implies that for 1 ≤ j ≤ h, every element of B(i)Vj is a linear ombination ofthe olumns of the matrix [A(i)Vi Π

]. Thus there exist (n − ℓ)× (n − ℓ) matries
F1,i,j and ℓ× (n− ℓ) matries F2,i,j suh that

[

A(i)Vi Π
]

[

F1,i,j

F2,i,j

]

= B(i)Vj. (A2)Furthermore, sine
h
∑

i=1

pi,st−1
A(i)Et−1 [xt|st = i] =

h
∑

i=1

pi,st−1
(B(i)xt−1 +ΠEt−1 [ηt|st = i])

=
h
∑

i=1

pi,st−1
B(i)xt−1 +ΠEt−1 [ηt]

=
h
∑

i=1

pi,st−1
B(i)xt−1and Π is of full olumn rank, we an hoose the F1,i,j and F2,i,j so that

h
∑

i=1

pi,jF2,i,j = 0ℓ,n−ℓ.Subtrating Equation (A1) from Equation (1) gives
A(i) (xt − Et−1 [xt|st = i]) = Ψ(i)εt +Π (ηt − Et−1 [ηt|st = i]) .This implies that there exist (n − ℓ) × k matries G1,i and ℓ × k matries G2,i suhthat

[

A(i)Vi Π
]

[

G1,i

G2,i

]

= Ψ(i). (A3)Let V ∗

i denote the generalized inverse of Vi and de�ne
x̂t = VstF1,st,st−1

V ∗

st−1
x̂t−1 + VstG1,stεt−1,

η̂t = −
(

F2,st,st−1
V ∗

st−1
x̂t−1 +G2,stεt−1

)

.This will also be a solution of Equation (1) whose span, onditional on st = i, is V̂i.This an be veri�ed by diret substitution using Equations (A2) and (A3) and the



MSV SOLUTIONS TO MSRE MODELS 27fat that Vst−1
V ∗

st−1
x̂t−1 = x̂t−1. Sine {xt, ηt}

∞

t=1 is an MSV solution, it must be thease that x̂t = xt and η̂t = ηt.Finally, [A(i)Vi Π
] must be invertible beause otherwise we would have multiplesolutions with the same onditional span. So, de�ne

[

F1,i

F2,i

]

=
[

A(i)Vi Π
]

−1

B(i).It is easy to see that F1,iVj = F1,i,j and F2,iVj = F2,i,j . Thus
(

h
∑

i=1

pi,jF2,i

)

Vj = 0ℓ,n−ℓ,and
xt = VstF1,stxt−1 + VstG1,stεt−1,

ηt = − (F2,stxt−1 +G2,stεt−1) .Appendix B. Singular A(i)Using the notation of Setion II, we know that
A(i)Vi =

[

In−ℓ

−Xi

]

. (A4)If A(i) were non-singular, then Equation (A4) is easily solved and the results ofSetion II follow. We now onsider the ase in whih A(i) may be singular. We anuse the QR deomposition to �nd an invertible matrix Ui suh that A(i)Ui is of theform
[

In−ℓ 0n−ℓ,ℓ

C1,i C2,i

]

.If the QR deomposition of A(i)′ is
A(i)′ = QiRi = Qi

[

Ri,1 Ri,2

0ℓ,n−ℓ Ri,3

]

,then
Ui = Qi

[

(

R′

i,1

)

−1
0n−ℓ,ℓ

0ℓ,n−ℓ Iℓ

]

,is the required matrix. If Ri,1 were not invertible, then a1(i), the upper blok of
A(i), would not be of full row rank. This would imply an aounting identity exists,at least for this regime, among the endogenous and predetermined omponents. Ifthis identity held aross all regimes, whih is the likely ase, then the number of



MSV SOLUTIONS TO MSRE MODELS 28endogenous and predetermined variables ould be redued and the tehnique ouldproeed. Equation (A4) implies that
U−1
i Vi =

[

In−ℓ

−Zi

]for some ℓ × n − ℓ matrix Zi and that Xi = Ci,2Zi − Ci,1. Substituting this intoEquation (9), we obtain
h
∑

i=1

pij

[

Ci,2Zi − Ci,1 Iℓ

]

B(i)Uj

[

In−ℓ

−Zj

]

= 0ℓ,n−ℓ.Let Z = (Z1, · · · , Zh), de�ne gj to be the funtion from R
hℓ(n−ℓ) to R

ℓ(n−ℓ) given by
gj (Z) =

h
∑

i=1

pij

[

Ci,2Zi − Ci,1 Iℓ

]

B(i)Uj

[

In−ℓ

−Zj

]

= 0ℓ,n−ℓ,and g to be the funtion from R
hℓ(n−ℓ) to R

hℓ(n−ℓ) given by
g (Z) = (g1 (Z) , · · · , gh (Z)) .We now have the following algorithm for �nding MSV solutions.Algorithm 3. Let Z(1) =
(

Z
(1)
1 , · · · , Z

(1)
h

) be an initial guess. If the kth iteration is
Z(k) =

(

Z
(k)
1 , · · · , Z

(k)
h

), then the (k + 1)th iteration is given by
vec
(

Z(k+1
)

= vec
(

Z(k)
)

− g′
(

Z(k)
)−1

vec
(

g
(

Z(k)
))

.where
g′ (X) =









∂g1
∂Z1

(Z) · · · ∂g1
∂Zh

(Z)... . . . ...
∂gh
∂Z1

(Z) · · · ∂gh
∂Zh

(Z)









.The sequene Z(k) onverges to a root of g(Z).As before, it is straightforward to verify that for i 6= j,
∂gj
∂Zi

(Z) = pij

(

[

In−ℓ 0n−ℓ,ℓ

]

B(i)Uj

[

In−ℓ

−Zj

])

′

⊗ Ci,1and for i = j,
∂gj
∂Zj

(Z) = pjj

(

[

In−ℓ 0n−ℓ,ℓ

]

B(j)Uj

[

In−ℓ

−Zj

])

′

⊗ Cj,1

+ In−ℓ ⊗

(

h
∑

k=1

pkj

[

Ck,1Zk + Ck2 Iℓ

]

B(k)Uj

[

0n−ℓ,ℓ

−Iℓ

])

.
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