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Abstract

In applications of structural VAR modeling, finite-sample properties may be difficult
to obtain when certain identifying restrictions are imposed on lagged relationships. As
a result, even though imposing some lagged restrictions makes economic sense, lagged
relationships are often left unrestricted to make statistical inference more convenient.
This paper develops block Monte Carlo methods to obtain both maximum likelihood
estimates and exact Bayesian inference when certain types of restrictions are imposed on
the lag structure. These methods are applied to two examples to illustrate the importance
of imposing restrictions on lagged relationships. ( 1999 Elsevier Science S.A. All rights
reserved.
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1. Introduction

When Sims (1980) introduced vector autoregressions (VAR) into economics,
the main thrust was that VAR modeling avoids ‘incredible’ identifying assump-
tions made by traditional large-scale macroeconometric models. Subsequently,
the great bulk of structural VAR work has focused on contemporaneous
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1A sample of such work includes Bernanke (1986), Blanchard and Watson (1986), Sims (1986),
Blanchard (1989), Gali (1992), Gordon and Leeper (1994), Pagan and Robertson (1995), Bernanke
and Mihov (1996), Eichenbaum and Evans (1995), Sims and Zha (1995), (Christiano et al.,
1996, 1997), Strongin (1995), Leeper et al. (1996), Cochrane (1996), Uhlig (1997), and Bernanke et al.
(1997).

2The emphasis on contemporaneous block recursivity goes back to Fisher (1966), Chapter 4).

relationships between variables or between residuals in a system of equations.1
In a recent paper by Sims and Zha (1997), they show how to make Bayesian
inference under a flat prior in both reduced-form VARs and identified VARs. In
that paper, they consider various types of identifying restrictions only on
contemporaneous coefficients.

There are instances, however, in which overidentification in VAR relates to
lag structure as certain lags do not enter certain equations. In many empirical
applications, such restrictions are not unreasonable; on the contrary, restric-
tions on the lag structure are necessary precisely on the ground of economic
reasoning. These situations frequently stem from some block exogeneity restric-
tions such as the crucial small-open-economy feature in international economics
or from some beliefs that certain lags do not appear in certain equations (e.g.,
Zellner and Palm, 1974; Zellner, 1985; Leeper and Gordon, 1992; Sims and Zha,
1995; Bernanke et al., 1997). Failing to impose these restrictions because they
may complicate statistical inference not only is economically unappealing but
also may result in misleading conclusions.

This paper develops Bayesian methods that can be readily applied to eco-
nomic problems that surface when overidentification in VAR relates to lag
structure. The methods deal with situations wherein a structural model is
composed of blocks that are recursive in the coefficients of contemporaneous
variables and wherein lag structure, due to possible restrictions on lagged
behaviors, may change from block to block.2 The paper distinguishes between
strong and weak recursive blocks in the contemporaneous coefficient matrix. In
the first situation, there are no excess restrictions on contemporaneous coeffi-
cients. Thus, even if the model is overidentified by some restrictions on lagged
variables, one can easily define a reduced form in which there are no lag
restrictions simply by exploring the recursive block structure. The solution
resembles the traditional one for fully recursive models (e.g., Zellner, 1971,
pp. 250—252). What is new is the development of a block Monte Carlo (MC)
method.

The situation of weak recursive blocks relates to a combination of some form
of block recursion and excess restrictions on contemporaneous coefficients.
Because of certain restrictions on lagged coefficients, conceptual and numerical
difficulties arise when an exact solution needs to be obtained. Consequently, the
convenient Bayesian procedures proposed by Sims and Zha (1997) fail to apply
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3A widely used informative prior in VAR models is known as ‘the Minnesota prior’ (Litterman,
1986). Sims and Zha (1998) extend such a prior to the structural VAR framework. The methods
developed in this paper are also valid under the Sims and Zha prior.

here. Indeed, such difficulties have caused earlier researchers either to provide
no error bands for impulse responses (e.g., Racette and Raynauld, 1992; Sims
and Zha, 1995), or to suggest some intuitive but, nonetheless, infeasible iterative
procedures (Dias et al., 1996). This paper sets out a generalized block MC
method to show that it is possible to obtain maximum likelihood (ML) estima-
tion and exact Bayesian inference with substantial computational gains. Al-
though the framework is developed especially for situations wherein certain
restrictions arise from lag structures, it includes as a special case structural
VARs with only contemporaneous restrictions discussed in Sims and Zha
(1997).

To focus on deriving finite-sample properties for the class of aforementioned
structural VAR models, this paper refrains from comparing the Bayesian
method with other methods such as some classical ones or incorrect ones. Such
a comparison has been thoroughly made by Kilian (1997) and by Sims and Zha
(1997) in VARs with contemporaneous restrictions. There is little to be gained
by repeating the comparison. Rather, this paper points out cases of potential
misuse of Bayesian methods.

The main objective of this paper is to provide ways of exploring implications
of the data that are contained in the likelihood function. Many researchers,
Bayesians or non-Bayesians, would be interested in the shape of the likelihood.
Since the likelihood function is a posterior probability density under a flat prior,
this paper also refrains from considering non-reference (informative) priors so
that the method as a scientific-reporting device appeals to as wide an audience
as possible. With the shape of the likelihood, one can always quantify one’s own
prior knowledge in particular problems (Ingram and Whiteman, 1994; and
Leeper et al., 1996).3

Section 2 of this paper lays out a general framework of structural VAR
models. Section 3 analyzes models with strong recursive blocks, provides
a block MC method that lays the foundation for the rest of the paper, discusses
practical implications of these models with a brief list of applications, and
points out the source of errors that occurred in previous works. Section 4
studies the model by Bernanke et al. (1997) to show how the block MC method
can be used to eliminate certain anomalous results discussed by them. Section 5
explores models with weak recursive blocks and establishes general results that
include the method of Sims and Zha (1997) and the method of Section 3 as
special cases. In Section 6, the small-open-economy example of Cushman and
Zha (1997) is used to show the advantage of using the model with weak recursive
blocks.
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4For expository clarity, deterministic variables are ignored.

2. General setup

Consider structural VAR models of the general form:4

A(¸)y(t)"e(t), t"1,2,¹, (1)

where A(¸) is an M]M matrix of non-negative-power polynomials in lag
operators with lag length p, A(0) (the coefficient matrix of ¸0 in A(¸)) is
nonsingular, y(t) is an M]1 vector of observed variables, and e(t) is an M]1
vector of structural disturbances. Disturbance e(t) is assumed to be Gaussian
with

E[e(t)e(t)@Dy(t!s), s'0]"I, E[e(t)Dy(t!s), s'0]"0, all t, (2)

where I is the identity matrix with dimension M. Partition A(¸) into

(A
ij
(¸))(i"1,2, n, j"1,2, n),

where each element A
ij
(¸) is an m

i
]m

j
matrix of polynomials in lag operators

and

m
1
#2#m

n
"M.

Accordingly, system (1) can be divided into a set of blocks:

A
i
(¸)y(t)"e

i
(t), i"1,2, n, all t, (3)

where A
i
(¸) is the matrix (A

i1
(¸),2, A

in
(¸)) and e

i
(t) is an m

i
]1 vector of

corresponding disturbances in block i. Throughout the paper, the assumption
that the lag structure is the same within a block is maintained, but identifying
restrictions on the lagged coefficients in A(¸) are allowed so that lag structures
can differ across blocks.

3. Strong recursive blocks

The analysis begins with models that have strong recursive blocks in the
contemporaneous coefficient matrix.
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Definition 1. Model (1) has strong recursive blocks in the contemporaneous
coefficient matrix A(0) if A

ij
(0)"0 for i'j and A

ij
(0) is unrestricted for j*i.

Before proceeding, several notations are in order. Denote the block diagonal
coefficient matrix of ¸0 in A(¸) by

A
$
(0)"diag(A

11
(0),2, A

ii
(0),2, A

nn
(0))

and rewrite model (1) as

A~1
$

(0)A(¸)y(t)"v(t), all t,

where v(t)"A~1
$

(0)e(t). (4)

Define

m
i~

"G
0, i"1,

m
1
#2#m

i~1
, i"2,2, n,

m
i`

"G
m

i`1
#2#m

n
, i"1,2, n!1,

0, i"n.

System (4) can then be divided into normalized blocks, each of which is simply
the rearranged form of the original block in Eq. (3):

y
i
(t)"C

i
(¸)y(t)#v

i
(t), i"1,2, n, all t, (5)

C
i
(¸)"(0

i~
, I

i
, 0

i`
)!A~1

ii
(0)A

i
(¸), (6)

where 0
i~

is the matrix of zeros with dimension m
i
]m

i~
, I

i
is the identity matrix

with dimension m
i
, 0

i`
is the matrix of zeros with dimension m

i
]m

i`
, and y

i
(t) is

an m
i
]1 vector of observed contemporaneous variables in block i.

System (5) consists of a set of n blocks of equations. In each block i, the
right-hand side of the equations contains contemporaneous variables y

j
(t) only

for j'i. Normalized disturbances v(t)’s have the characteristic of block or-
thoganality:

E[v(t)v(t)@Dy(t!s), s'0]"diagA+
11

,2, +
ii

,2, +
nn
B, (8)

+
ii

"A~1
ii

(0)A~1
ii

(0)@. (9)
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Obviously, framework (5) is widely used in the literature. The leading case is
a class of VAR models with Choleski decompositions of the estimated
covariance matrix of residuals. In these cases, each equation simply forms
a block. A more sophisticated use of Eq. (5), however, concerns cases in which
the contemporaneous coefficient matrix A

ii
(0) is non-recursive or lag structures

differ across blocks or both.
Let k

i
be the total number of right-hand-side variables per equation in ith

block of Eq. (5) and rewrite Eq. (5) in matrix form:

Y
i

TCmi

" X
i

TCki

C
i

kiCmi

# V
i

TCmi

, i"1,2, n, (10)

where Y
i
is a matrix of observations of contemporaneous variables, X

i
is a matrix

of observations of lagged variables as well as contemporaneous variables (½
j
’s

( j'i)) from other blocks, C
i
is the matrix form of C

i
(¸), and �

i
is the matrix

form of v
i
(t) (t"1,2, ¹). It can be seen from Eq. (1) that the conditional p.d.f.

of y(t) is

p(y(t)Dy(t!s), s'0)JDA(0)Dexp[!1
2
(A(¸)y(t))@(A(¸)y(t))].

Thus, the joint p.d.f. of the data y(1),2, y(¹), conditional on the initial observa-
tions of y, is proportional to

DA
$
(0)DTexpC!1

2
+
t

(A(¸)y(t))@(A(¸)y(t))D
J<

i

DA
ii
(0)DTexp[!1

2
trace(S

i
(C

i
)A

ii
(0)@A

ii
(0))]

J<
i

DA
ii
(0)DTexp[!1

2
trace(S

i
(CK

i
)A

ii
(0)@A

ii
(0)

#(C
i
!CK

i
)@X@

i
X

i
(C

i
!CK

i
)A

ii
(0)@A

ii
(0))], (11)

where

CK
i
"(X@

i
X
i
)~1X@

i
Y
i
, S

i
(C

i
)"(Y

i
!X

i
C

i
)@(Y

i
!X

i
C

i
). (12)

In the first line of Eq. (11), the equality DA
$
(0)D"DA(0)D is used because A(0) is

block recursive. The second line of Eq. (11) indicates that this equality is crucial
for dividing the likelihood function for the whole system into separate likelihood
functions for individual blocks. The property of breaking the likelihood into
m blocks is related to the SUR idea introduced by Zellner (1962), when contem-
poraneous correlations of residuals are zero (see also Zellner, 1971, pp. 250—252).
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5Section 5 provides an interpretation of prior DA
ii
(0)Dki.

Here, the analysis takes up the structural form directly. The advantage, as shown
below, is that Bayesian inference can be derived conveniently.

From the third line of Eq. (11), it is clear that the concentrated likelihood for
is A

ii
(0)

DA
ii

(0)DTexpC!1
2
trace(S

i
(CK

i
)A

ii
(0)@A

ii
(0))D. (13)

To inform readers of the overall likelihood shape, the analysis here is restricted
to only a diffuse prior on (A

ii
(0), C

i
). In particular, this paper uses the diffuse

prior DA
ii

(0)Dki suggested by Sims and Zha (1997) for elements of A
ii

(0). As shown
in the following theorem, this prior eliminates possible discrepancies between
the posterior mode and the ML estimate.5 The prior on all other parameters is
flat. Let /(k; X) denote a normal p.d.f. with mean k and covariance matrix X and
vec(A) the vectorized column of matrix A. The theorem and algorithm, follow-
ing, establish a block MC method.

¹heorem 1. ºnder the diffuse prior DA
ii
(0)Dki on (A

ii
(0), C

i
), the joint posterior p.d.f.

of (A
ii
(0),C

i
) is

p(A
ii
(0))p(C

i
DA

ii
(0)),

where

p(A
ii
(0))J Eq. (13),

p(vec(C
i
)DA

ii
(0))"u(vec(CK

i
); (A

ii
(0)@A

ii
(0))~1?(X@

i
X

i
)~1). (14)

Furthermore, the value of A
ii
(0) at the peak of its marginal posterior density is the

M¸ estimate.

Proof. Under prior DA
ii
(0)Dki, likelihood (11) implies that the joint posterior p.d.f.

of (A
ii
(0), C

i
) is

DA
ii
(0)DT`ki expC!1

2
trace(S

i
(CK

i
)A

ii
(0)@A

ii
(0)

#(C
i
!CK

i
)@X@

i
X
i
(C

i
!CK

i
)A

ii
(0)@A

ii
(0))D. (15)
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Note that the second part of the exponential term in Eq. (15) is

trace((C
i
!CK

i
)@X@

i
X
i
(C

i
!CK

i
)A

ii
(0)@A

ii
(0))

"vec(C
i
!CK

i
)@(A

ii
(0)@A

ii
(0)?X@

i
X

i
)vec(C

i
!CK

i
). (16)

Since Eq. (15) does not involve C
i
elsewhere except for term Eq. (16), the p.d.f. of

C
i
has the exact form of the normal p.d.f. (14). Integrating out C

i
in Eq. (15)

produces the term DA
ii
(0)D~ki so that the marginal posterior p.d.f. of A

ii
(0) is the

same as the concentrated likelihood Eq. (13). Consequently, the value of A
ii
(0) at

the peak of (14) is the ML estimate. Q.E.D.
Given A

ii
(0) and C

i
(¸), it follows from Eq. (6) that A

i
(¸) can be calculated as

A
i
(¸)"A

ii
(0)((0

i~
, I

i
, 0

i`
)!C

i
(¸)), i"1,2, n. (17)

Denote a function of A(¸) by f (A(¸)). By Theorem 1, Bayesian inference of
f (A(¸)) can be obtained through MC samples that are generated block by block.
The algorithm, following, formalizes the procedure.

Algorithm 1. The numerical procedure involves the following steps:
For i"1,2, n,

(a) generate samples of A
ii
(0) by drawing from marginal posterior p.d.f. (13);

(b) conditional on drawn A
ii
(0)’s, sample C

i
from Gaussian distribution (14);

(c) given MC samples of (A
ii
(0), C

i
), calculate samples of A

i
(¸) by Eq. (17);

End;
(d) calculate f (A(¸))s from MC samples of A(¸);
(e) use these samples to compute the marginal Bayesian posterior probability

interval for each element of (A(¸)).

The essential part of Algorithm 1 involves steps (a)—(c); they can be all done
block by block. The Bayesian method of Sims and Zha (1997) applies only to
situations whereby lags are unrestricted. In this case, the whole system can be
regarded as one single block and thus Theorem 1 holds for this whole system.
This is exactly what Sims and Zha’s procedure does. But if lag structures differ
across blocks, Theorem 1 is no longer valid for the whole system as one single
block. This point, obvious though it might seem, has not been recognized by all
researchers. Indeed, when certain restrictions are imposed on lags, the common
practice is to use the standard RATS procedure of Doan (1992) or Sims and
Zha’s method to generate MC draws of A(¸) (this amounts to using Theorem
1 to the whole system). For each draw of A(¸), the lag restrictions are then
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6See, for example, Leeper and Gordon (1992). The author is very grateful to Eric Leeper for
bringing out this point.

7Examples are numerous. To sample a few, Pagan (1993) argues that certain disaggregated data
do not enter as explanatory variables a set of equations that describe the aggregate behavior. Levy et
al. (1996) assume that the wholesale prices of fruits do not affect their spot prices both contempor-
aneously and through lags. Leeper and Gordon (1992) examine the liquidity effects under the
assumption that money is exogenous. Genberg et al. (1987) treat Switzerland explicitly as a small
open economy that has little influence on the foreign economy.

8Prior D+
ii
D~ki@2 is a diffuse Wishart p.d.f. in the sense of Geisser (1965) and in a univariate case is

simply an ignorance prior discussed in Leamer (Leamer, 1978, pp. 78—84). It is implied by prior
DA

ii
(0)Dki for A

ii
(0) except for a Jacobian term. When A

ii
(0) is upper triangular, for example, the

Jacobian is D+~1
ii

/A
ii
(0)D"2mi<mi

j/1
aj
jj
, where a

jj
’s are the diagonal elements of A

ii
(0). In practice,

ignoring this Jacobian would not make much difference on the results as sample size ¹ is, in general,
considerably larger than m

i
. For detailed discussion of these priors, see Sims and Zha (1998).

9See pp. 389—396 in Zellner (1971).

imposed.6 Such a procedure is incorrect because it fails to take account of the
restrictions on lagged variables when draws of A(¸) are made.

The development described in Theorem 1 and Algorithm 1 lays out the
foundation for the rest of the paper. In many applications, there are no excess
restrictions on elements in A

ii
(0) so that there is a one-one mapping between

A
ii
(0) and R

ii
in Eq. (9).7 In this case, one can transform A

ii
(0) into R

ii
in

likelihood Eq. (11) according to Eq. (9). Under the improper prior DR
ii
D~ki@2 for

R
ii
, the marginal posterior p.d.f. of R

ii
becomes8

D+~1
ii

DT@2 exp[!1
2
trace(S

i
(CK

i
)+~1

ii
)]. (18)

From Eqs. (9) and (11) it can be seen that Eq. (18) is the concentrated likelihood
function for +

ii
. P.d.f. (18) is of inverted Wishart form and R~1

ii
has the following

Wishart distribution:9

Wishart(S~1
i

(CK
i
), ¹!m

i
!1, m

i
). (19)

MC samples of A
ii
(0) can be generated by first drawing R~1

ii
from Eq. (19)

and then transforming drawn R~1
ii

back to A
ii
(0) according to Eq. (9).

Bayesian inference of f (A(¸)) can then be computed by following steps (b)—(e) in
Algorithm 1.

Although Theorem 1 lays out the straightforward method, the impulse re-
sponses in previous works were provided either without error bands (Genberg
et al., 1987), or with asymptotic confidence bands (Levy et al., 1996), or with
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10 It is well understood that asymptotic confidence bands perform very badly in small samples
(see, for example, Kilian (1997)). Sims and Zha (1997) show examples where incorrect Bayesian
procedures may lead to mistaken inference.

11For applications of the block MC method developed here, see, for example, Leeper (1997).
12A published paper by Racette and Raynauld (1992) is an example.
13Previous works nonetheless generated MC draws of +~1

ii
directly from a Wishart, replaced S

i
(CK

i
by drawn +

ii
, and then obtained A

ii
(0) that maximizes Eq. (13) (e.g., Canova, 1991; Gordon and

Leeper, 1994). But the draws of +
ii
so obtained fail to take account of the excess restrictions on A

ii
(0).

14Of course, this weighted method is valid also for cases in which there is a one—one mapping
between A

ii
(0) and +

ii
. In particular, if such a nonlinear mapping is complicated and requires some

non-trivial computing time to transform +
ii

back to A
ii
(0), the weighted procedure may be efficient

compared to the procedure with direct draws from Wishart.
15Following Bernanke et al. (1997), the monthly GDP deflator and GDP are interpolated. The

VAR model is estimated with a constant and six lags.

bands incorrectly computed.10 Not until recently has Algorithm 1 been used to
generate correct error bands for impulse responses.11

The strong recursive structure defined in Definition 1 does not exclude
situations in which there are excess restrictions on A

ii
(0).12 In this case, there is

no one—one relationship between A
ii
(0) and R

ii
. Thus, it makes no sense to draw

R~1
ii

from Eq. (19) because A
ii
(0) can no longer be recovered uniquely from R

ii
.13

It is probably due to this difficulty that error bands for the impulse responses
were not provided in some previous works (Racette and Raynauld, 1992). One
can, however, use the idea of the weighted MC method of Sims and Zha (1997)
and apply it to each of the blocks that have no one—one relation between A

ii
(0)

and +
ii
. Specifically, A

ii
(0) can be drawn from the asymptotic Gaussian distribu-

tion approximated by the second-order Taylor expansion of the logarithm of
Eq. (13) at its peak and then repeat steps (b)—(d) in Algorithm 1. Prior to step (e)
in Algorithm 1, each sample of draws of f (A(¸)) is weighted by the ratio of the
product of Eq. (13)’s for these blocks to the product of those approximate
Gaussian p.d.f.’s.14

4. Effects of oil price shocks

This section provides a concrete example of how the method proposed in the
last section can change the results established in the existing literature. Specifi-
cally, the five-variable VAR model studied by Bernanke et al. (1997) is examined.
The five variables are the federal funds rate (FFR), the PPI crude petroleum
price index (P

0*-
), the spot market price index of all commodities from the

Commodity Research Bureau (P
#.

), the gross domestic product (GDP) deflator
(P), and real GDP (y). All variables are in logarithm except FFR, which is
expressed in percentage point. All data are monthly and for the sample period
1967 : 1—1997 : 3.15
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16All error bands throughout this paper were generated with 5000 MC draws. In dynamic
multivariate models, a parameter/observation ratio is typically high. In the Bernanke et al. model,
the ratio is 201/363. A high parameter/observation ratio tends to make error bands rather wide
(Zellner, 1985). In a recent paper, Sims and Zha (1998) formulated an informative prior for the
parameters of structural VAR models. The prior effectively reduces the number of free parameters
and the widths of probability bands (see Leeper et al., 1996 for applications). Although this paper
follows the standard practice in the literature of focusing only on the likelihood with a flat prior, the
prior proposed by Sims and Zha seems successful in dealing with problems associated with a high
parameter/observation ratio. In addition, all algorithms set out in this paper are valid for Bayesian
VAR models under the Sims and Zha prior.

In Bernanke et al. (1997), only contemporaneous restrictions are imposed and
MFFR, P

0*-
, P

#.
, P, yN is of upper-triangular order. This implies that P

0*-
does not

affect macroeconomic variables MP
#.

, P, yN contemporaneously but is affected
by these variables both contemporaneously and through lags. The first column
of graphics in Fig. 1 displays the three 48-month impulse responses studied by
Bernanke, Gertler, and Watson: the responses of output (y), the general price
level (P), and the interest rate (FFR) to a one-standard-deviation shock in oil
price (P

0*-
). In Fig. 1, solid lines are the ML-estimated responses; intervals

between the two dashed lines contain 0.68 probability as one-standard-devi-
ation error bands.16 Clearly, a shock to P

0*-
leads to subsequent decline in

general price level (P) while the dynamic effects on both output (y) and the
interest rate (FFR) are very small. Bernanke et al. (1997) regard these responses
as ‘anomalous’ or ‘unsatisfactory’ because ‘the conventional wisdom’ is that oil
price shocks should lead to a rise, not a decline, in the price level and should
have ‘a significant (not small) and a priori plausible reduced-form impact on the
economy’.

If one believes in this conventional wisdom, these results are not promising.
The real question then is what is the cause of these ‘unsatisfactory’ results. The
analysis here argues that they may stem from the identifying restrictions placed
by Bernanke, Gertler, and Watson. Movements in oil prices tended to be
unrelated to the rest of the economy and, as Bernanke, Gertler, and Watson
correctly point out, ‘were arguably exogenous, reflecting a variety of develop-
ments both in the Middle East and in the domestic industry’. Therefore, it makes
economic sense to impose the exogeneity restriction on P

0*-
which is not present

in the original model of Bernanke, Gertler, and Watson.
Suppose one imposes the exogeneity restriction on P

0*-
. Let the first block of

equations contain all variables MFFR, P
#.

, P, yN and the second block contain
only P

0*-
both contemporaneously and in lags. Since dynamic responses to

P
0*-

shocks are invariant to how the first contemporaneous block A
11

(0) is
triangularized, MFFR, P

#.
, P, yN is ordered to be upper triangular (i.e., A

11
(0) is

upper triangular). Algorithm 1 was used to generate the impulse responses (solid
lines) and 0.68 probability bands (dashed lines). The results of interest are
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Fig. 1. Dynamic responses to a P
0*-

shock.

reported in the second column of Fig. 1. These results are consistent with the
conventional wisdom. Following a shock in oil prices, the interest rate rises,
reflecting the Federal Reserve’s contractionary action against possible future
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inflation. Consequently, output (y) declines considerably. The general price
level also rises, but not as much as it would have if the Federal Reserve had not
raised the interest rate in response to P

0*-
shocks. Note that the effects on the

economy when the exogeneity restriction is imposed (the second column of
Fig. 1) are in magnitude larger than those when the restriction is ignored (the
first column of Fig. 1). This example illustrates that using the method developed
here one can obtain credible results if one imposes economically sensible
restrictions.

5. Weak recursive blocks

So far, the discussion has been concerned with cases in which all elements of
submatrix A

ij
(0)(j'i) are unrestricted. In this section, the discussion turns to

a more general situation in which a strong recursive structure is insufficient to
identify certain behaviors in the actual economy. This situation arises especially
in the recent literature of policy analysis in which some restrictions on
A

ij
(0)(j'i) are required to identify monetary policy (e.g., Sims and Zha, 1995;

Bernanke et al., 1997; Cushman and Zha, 1997). This section develops a general-
ized block MC method for this situation and shows that both the Bayesian
procedure proposed by Sims and Zha (1997) and the block MC method in
Section 3 are special cases.

The analysis begins with the following definition:

Definition 2. Model (1) has weak recursive blocks in the contemporaneous
coefficient matrix A(0) if A

ij
(0)"0 for i'j and if there are further linear

restrictions on some elements in A
ij
(0) for j'i.

When some restrictions on both lags and A
ij
(0) for j'i are in place, neither

the Bayesian procedure of Sims and Zha (1997) nor the block MC procedure
developed so far works for this situation. The procedure of Sims and Zha does
not work because, as discussed in Section 3, lag structures differ across blocks.
The block MC method does not work here simply because the OLS estimate
CK
i
in Eq. (12) takes no account of restrictions on elements in A

ij
(0) for j'i and is

thus no longer the ML estimate or Bayesian posterior mode for C
i
.

To derive a new method, first define

F(¸)"A(0)!A(¸).

In agreement with the divided blocks in Eq. (3), partition F(¸) into a column
vector of n block sub-matrices F

i
(¸)’s (i"1,2, n) so that

F
i
(¸)"A

i
(0)!A

i
(¸). (20)
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Hence, Eq. (3) can be rearranged as

A
i
(0)y(t)"F

i
(¸)y(t)#e

i
(t), i"1,2, n, all t. (21)

To write Eq. (21) in compact matrix form, let W
i

be a ¹]q
i

matrix of
observations on the right-hand side of Eq. (21), where

q
i
"k

i
!m

i`1
!2!m

n
.

Further, let F
i
be the q

i
]m

i
matrix form of F

i
(¸) corresponding to W

i
, and E

i
be

the ¹]m
i
matrix form of e

i
(t)(t"1,2, ¹). Thus, the matrix version of Eq. (21)

becomes:

Y
TCM

A
i
(0)@

MCmi

" W
i

TCqi

F
i

qiCmi

# E
i

TCmi

, (22)

where Y"(Y
1
,2, Y

n
). Note that A

i
(0)"(A

i1
(0),2, A

in
(0)), where A

ij
(0)"0 for

j(i.
Brute-force estimation of parameters (A

i
(0), F

i
) is to use some iterative pro-

cedure, an idea that occurred independently to a number of researchers (Dias et
al., 1996). Specifically, such a procedure involves the following steps: initiate the
values of A

i
(0); with initiated value Z

i
"YA

i
(0)@, compute OLS estimate

FK
i
(W@

i
W

i
)~1W@

i
Z
i
calculate the covariance matrix of reduced-form residuals for

the whole system; replace S
i
(CK

i
) in Eq. (13) by this covariance matrix and treat

the whole system as one single block to find A(0) that maximizes Eq. (13); repeat
this procedure using the new value of A(0) until convergence is established.

Intuitive though this iterative procedure might be, it has little value in practice
because, for each iteration, one has to solve a maximization problem for A(0)
— a very expensive task computationally. To do inference, this procedure is
almost infeasible for the typical VAR systems used in the literature.

The following theorem and algorithm establish the generalized block Monte
Carlo method that proves easy and inexpensive to implement. For i"1,2, n,
define

N
i
"(W@

i
W

i
)~1W@

i
Y, (23)

»
i
(N

i
)" (Y!W

i
N

i
)@(Y!W

i
N

i
). (24)

¹heorem 2. ºnder the flat prior on (A
i
(0), F

i
), the joint posterior p.d.f. of

(A
i
(0), F

i
) is

p(A
i
(0))p(F

i
DA

i
(0)),
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where

p(A
i
(0))JDA

ii
(0)DT exp[!1

2
trace(V

i
(N

i
)A

i
(0)@A

i
(0))], (25)

p(vec(F
i
)DA

i
(0))"u(vec(N

i
A

i
(0)@); I

i
?(W@

i
W

i
)~1). (26)

Furthermore, the value of (A
i
(0), F

i
) at the peak of its posterior density is the M¸

estimate.

Proof. By Eq. (22), the expression of likelihood function (11) can be rearranged
in a different form as follows:

DA
$
(0)DT [!1

2
+
t

(A(¸)y(t))@(A(¸)y(t))]

J<
i

DA
ii
(0)DT exp[!1

2
trace((Y

i
A

i
(0)@!W

i
F
i
)@(Y

i
A

i
(0)@!W

i
F
i
))]

J<
i

DA
ii
(0)DT exp[!1

2
trace(»

i
(N

i
)A

i
(0)@A

i
(0)

#(F
i
!N

i
A

i
(0))@W@

i
W

i
(F

i
!N

i
A

i
(0)))]. (27)

Under the flat prior on (A
i
(0), F

i
), Eq. (27) is also the joint posterior p.d.f. of

(A
i
(0), F

i
) for all i. Furthermore, (A

i
(0),F

i
) is independent of all other parameters

(A
j
(0), F

j
) for jOi, and its posterior p.d.f. is

DA
ii
(0)DT exp[!1

2
trace(»

i
(N

i
)A

i
(0)@A

i
(0)

#(F
i
!N

i
A

i
(0))@W@

i
W

i
(F

i
!N

i
A

i
(0)))]. (28)

Note that term »
i
(N

i
) does not contain any parameter. From Eq. (28) it is clear

that the marginal posterior p.d.f. for A
i
(0) has form Eq. (25) and the conditional

posterior p.d.f. of F
i
is Gaussian in form as expressed in Eq. (26).

Since the likelihood and posterior of (A
i
(0), F

i
) are the same, the ML estimate

is the value of (A
i
(0), F

i
) at the peak of the posterior p.d.f. K

Theorem 2 lays out the theoretical ground on which the computation of exact
Bayesian inference of f (A(¸)) can be executed. The following algorithm sets out
the numerical procedure.
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Algorithm 2. The procedure for computing exact finite-sample inference of
f (A(¸)) is composed of the following steps:

For i"1,2, n,

(a) draw A
i
(0) from the asymptotic Gaussian approximated by the second-

order Taylor expansion of the logarithm of Eq. (25) at its peak;
(b) conditional on drawn samples of A

i
(0), generate samples of F

i
from

Gaussian distribution Eq. (26);
(c) given generated samples of (A

i
(0), F

i
), calculate samples of A

i
(¸) by

Eq. (20);
End;
(d) calculate samples of f (A(¸)) accordingly and then weight each sample of

f (A(¸)) by the ratio of the product of Eq. (25)’s (i"1,2, n) to the product of the
approximate Gaussian p.d.f.s (i"1,2, n);

(e) use these weighted samples to compute the marginal Bayesian posterior
probability interval for each parameter of f (A(¸)).

As in Algorithm 1, crucial steps (a)—(c) in Algorithm 2 require computation
only block by block. Again, when identifying restrictions are imposed only on
contemporaneous coefficients, one can treat the whole system as one block and
thus the procedure considered by Sims and Zha (1997) is a special case of
Theorem 2. Moreover, the following theorem shows that the block MC method
developed in Section 3 is also a special case.

¹heorem 3. If strong block i is recursive contemporaneously, the generalized block
MC of ¹heorem 2 attains the same estimation and inference of the block para-
meters as does the block MC method of ¹heorem 1.

Proof. Denote the submatrix of the last m
i`

columns in A
i
(0) by A

i`
(0) (with

dimension m
i
]m

i`
) so that

A
i
(0)"(0

i~
, A

ii
(0), A

i`
(0)).

The parameter space in Theorem 2 is

(A
ii
(0), A

i`
(0), F

i
(¸)). (29)

The parameter space in Theorem 1 is

(A
ii
(0), C

i
(¸)). (30)

Since all elements in A
i`

(0) are unrestricted by assumption, parameter ma-
trices Eqs. (29) and (30) and have a one—one mapping through the relation:

C
i
(¸)"!A~1

ii
(0)A

i`
(0)#A~1

ii
(0)F

i
(¸). (31)

Relation Eq. (31) is derived from Eqs. (6) and (2).
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17See Leeper et al. (1996) for a thorough review on this point. See also Sims and Zha (1998) and
Christiano et al. (1997).

To prove this theorem, it is sufficient to show that after parameter space
Eq. (29) is transformed to Eq. (30), posterior p.d.f. Eq. (28) of parameter matrix
Eq. (29) is the same as posterior p.d.f. Eq. (15) of parameter matrix Eq. (30).
First, note that since Eqs. (5) and (21) are simply two different arrangements of
the same block of equations, likelihood functions Eqs. (11) and (27) are identical.
Now, given A

ii
(0), Eq. (31) implies that the mapping between C

i
(¸) and

(A
i`

(0), F
i
(¸)) is a simple linear transformation, and the Jacobian of the trans-

formation of (A
i`

(0), F
i
(¸)) into C

i
(¸) is DA

ii
(0)Dki. Hence, the implied posterior

p.d.f. of parameter matrix Eq. (30) from the posterior distribution of Eq. (29) is
simply posterior p.d.f. Eq. (28) multiplied by Jacobian term DA

ii
(0)Dki. The result

leads to the exact form of Eq. (15) because likelihood functions Eqs. (11) and (27)
are identical. K

Theorem 3 offers another interpretation of using DA
ii
(0)Dki as a diffuse prior for

A
ii
(0) in Section 3. Note that parameter C

i
(¸) is of reduced form. When specify-

ing a prior in reduced-form parameter space (A
ii
(0), C

i
(¸)), prior DA

ii
(0)Dki is

simply to take account of the Jacobian so that when (A
ii
(0), C

i
(¸)) is transformed

to structural parameter space (A
ii
(0), A

i`
(0), F

i
(¸)), the prior on A

ii
(0) is flat.

Although Theorem 2 offers the method that is more general than the one in
Theorem 1, there are situations in which Theorem 1 is strictly preferred. For
instance, when A(¸) is composed of strong recursive blocks and there is no
excess restriction on A

ii
(0), inference of parameters (A

ii
(0), C

i
) is computationally

faster because it involves neither a maximization problem nor weighted samp-
ling. Of course, given modern computational capacity, the difference in comput-
ing time is diminishing.

The bulk of identified VAR work, when restrictions are imposed, often
identifies blocks of equations without distinct behavioral interpretations for
each individual equation within a block.17 Within the block, A

ii
(0) can be

arbitrarily ordered through orthonormal transformation. Dynamic responses of
all variables in the whole system to a shock outside block i are invariant to how
A

ii
(0) is orthonormally transformed in the case of a strong recursive structure

with a one—one relation between A
ii
(0) and +

ii
. This result holds because each

block becomes a subsystem. One special case of such an orthonormal trans-
formation is triangularization, which has been used widely in the existing
literature. Nonetheless, when the one—one relation between A

ii
(0) and +

ii
does not hold or the model has a weak recursive structure as defined in
Definition 2, whether the invariance result holds is still unknown. The following
theorem establishes the result that applies to both strong and weak recursive
structures.
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¹heorem 4. ¸et the impulse response of y
q
(t#s) to shock e

r
(t) be defined as

/
qr
(s)"

y
q
(t#s)

e
r
(t)

, (32)

where q"1, 2,2, M, r)m
i
or r*m

i`
, and s*0. Assume that there may be

linear restrictions on some elements in A
kj
(0) for j*k and kOi, but A

ij
(0) is

unrestricted for j'i. ¸et U
>r
(s)" (/

qr
(s)) (q"1, 2, 2, M) be an M]1 matrix.

¹hen the values of U
> r
(s) are invariant to orthonormal transformation of A

ii
(0).

Proof. Denote

R" A
I
i~

0 0

0 R
ii

0

0 0 I
i`
B ,

where R
ii

is an m
i
]m

i
orthogonal matrix, I

i~
is the m

i~
]m

i~
identity matrix,

and I
i`

is the m
i`

]m
i`

identity matrix. Orthonormal transformation of A
ii
(0) is

equivalent to pre-multiplying A
ii
(0) by R

ii
. Because A

ij
(0) is unrestricted for j*i

and the same lag structure holds within block i, such a transformation amounts
to arriving at the transformed system that implies the same time-series proper-
ties for the data:

AI (¸)y(t)"e(t), (33)

where

AI (¸)"RA(¸). (34)

Define B(¸)"I!A~1(0)A(¸) and let B
j
be the coefficient matrix corresponding

to ¸j(j"1,2, p) where, recall, p is the lag length. Impulse response matrix
U(s) (M]M) is defined as (/

gh
(s)) (g,h"1,2, M). Hence, U(s) lies in the linear

space spanned by the elements in a subset of M(<j
h/1

Bkh
h
)A~1(0)Nkhw0

j/1,2, p
, where

Bkh
h

is matrix B
h
raised to power k

h
.

Similarly, let BI (¸)"I!AI ~1
0

(¸)AI (¸) and BI
j
be the coefficient matrix corre-

sponding to ¸j. Since R is an orthogonal matrix, Eq. (34) implies that
AI ~1"A~1(0)R and thus BI

j
"B

j
for j"1,2, p. Hence, impulse response

matrix UI (s) from system Eq. (33) lies in the linear space spanned by the elements
in a subset of M(<j

h/1
Bkh

h
)A~1(0)RNkhw0

j/1,2, p
.

Note that post-multiplying M]M matrix (<j
h/1

Bkh
h
)A~1(0) by R affects only

the columns of (<j
h/1

Bkh
h
)A~1(0), where the location of these columns is indexed
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18Some of these policy rules under study imply that the Federal Reserve engages in interest
rate targeting rather than a rule of responding to the state of the economy. Bernanke, Gertler,
and Watson also assume that the federal funds rate does not enter certain equations in the
system.

by m
i
. Since r is outside block i (i.e., r)m

i~
or r)m

i`
), it follows that

U
> r
(s)"UI

> r
(s). K

Theorem 4 provides a formal justification for triangularizing certain blocks in
both strong and weak recursive structures when distinct interpretations for
individual equations within a block are not required. Much of structural VAR
work focuses on identifying the effects of a monetary policy shock and thus
contemporaneous coefficient matrices in other blocks of equations often take on
a triangular form (Leeper et al., 1996). Theorem 4 ensures that the effects of
a policy shock are invariant to such a triangular form, even in the case of a weak
recursive structure.

As researchers become more aware of using a priori restrictions based
on economic arguments, weak recursive structures will prove increasingly
useful. One recent example is Sims and Zha (1995) and Bernanke et al.
(1997), who examine the effects of systematic monetary policy under different
types of rules.18 Weak recursive blocks often arise from these models. Due
to the lack of available tools, however, error bands were not always provided
for the estimated impulse responses. Another example relates to the area of
international economics, where a crucial restriction is that a small open econ-
omy has little impact on the ‘rest of the world’. The next section reviews such
an example.

6. Small open economy

In this section, the generalized block MC method is applied to the small open
economy example studied by Cushman and Zha (1997). The purpose is to show
what kinds of anomalous results one would obtain if a small open economy were
not adequately taken into account. A nine-variable VAR model is considered.
Canada is the home country here and is treated as a small open economy
relative to the U.S. (foreign country) economy. There are five home-country
variables: M1, the 3-month Treasury bill rate (R), the exchange rate (the U.S.
dollar price of the Canadian dollar, Exc), the consumer price index (P),
and industrial production (y). Four foreign variables are included in the
model: the IMF world commodity export price (¼]p*), the U.S. federal
funds rate (R*), the U.S. consumer price index (P*), and U.S. industrial
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19Cushman and Zha (1997) also include two additional variables (exports and imports) to
examine the effect on the bilateral trade between Canada and the U.S.

20This is not the place to debate whether or not this restriction imposed by Cushman and Zha fits
to economists‘ a priori beliefs. One should note, however, that this functional form is implied by
many dynamic stochastic general equilibrium models, in sharp contrast to the ‘long-run’ money
demand equation which relies on reduced-form empirical evidence. See, for example, (Blanchard and
Fisher, 1989, p. 513), (McCallum, 1989, pp. 35—43), Leeper and Sims (1994), and Sims and Zha (1995).

production (y*).19 All data are monthly and are the same as in Cushman and
Zha, with their sample period 1974:1—1993:12. All variables are in logarithm
except interest rates that are expressed in percentage point.

The identification approach used here follows exactly what Cushman and
Zha assumed. Specifically, the identification treats Canada as a small open
economy and assumes that the Canadian variables do not enter as explanatory
variables the equations within the foreign-country block, both contempor-
aneously and through lags. There are no other restrictions on lags. For contem-
poraneous restrictions, foreign variables M¼]p*, R*, P*, y*N simply take on an
upper triangular form. As for the Canadian economy, there are four distinct
behaviors that are identified. The first is the money demand equation that takes
up the functional form M1!P"y!aR, where a is a coefficient.20 The second
is the Canadian monetary policy reaction function (often called ‘the money
supply equation’), which allows the Bank of Canada (the central bank in
Canada) to respond to all other variables except output (y and y*) and price (P
and P*). This exclusion restriction on prices and output is justified because the
data on output and the general price level are unobservable within the month.
The third concerns the equation reflecting a financial market in which the
exchange rate responds to all variables. The fourth concerns a block of equa-
tions specifying a production sector composed of MP, yN. All other contempor-
aneous variables are excluded from this block on the basis that these variables
are probably related to home production only through lags. In this block, each
individual equation is not identified and, consequently, variables MP, yN are
ordered to upper triangular. By Theorem 4, this triangularization has no effect
on the dynamic responses to a monetary policy shock. Clearly, this identifica-
tion leads to weak recursive blocks.

The marginal processes for individual variables in this structural model are of
finite-order ARMA form but in a restricted manner implied by the identifying
restrictions (Zellner and Palm, 1974). Although these ARMA processes may be
useful for predictions, structural analysis on, say, the effects of a monetary policy
shock requires one to work directly on the structural model as a whole. This
point is well articulated by Zellner and Palm (1974). For this nine-variable
system, therefore, the generalized block MC method (Algorithm 2) is employed
to compute dynamic responses to structural shocks.
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21ML estimation for the entire nine-variable system took 14.10 s on a Pentium II/266 machine.
The computation took advantage of contemporaneously recursive blocks. If one had treated the
whole system as one block, computing time would have increased twofold for this example. In
general, the more blocks a system is broken into, the more gain one will obtain in computing time.
As for this nine-variable system, computation took 35.45 s per 1000 MC draws. To take account of
possible fat tails of the true distribution of A

i
(0), the asymptotic Gaussian in step (a) of Algorithm 2 is

replaced by a t-distribution with 9 degrees of freedom (Geweke, 1989). Alternatively, when the
distribution of A

i
(0) is very non-Gaussian, the Metropolis method proposed by Waggoner and Zha

(1997) can be used.

Fig. 2 displays several responses of interest with 0.68 probability bands.21
These are the dynamic responses to a contractionary monetary policy shock.
Following this contractionary shock, the money stock (M1) falls, the interest
rate (R) rises initially (the liquidity effect), the exchange rate responds positively
for the first year (the exchange rate effect), and both the general price level (P)
and output (y) fall (no price or output puzzle). These results are consistent with
a priori beliefs about the effects of monetary policy shocks in a small open
economy; no anomalies produced in previous empirical studies occur in the
results.

Natural questions are: How important is it to impose the small-open-econ-
omy restriction? What sorts of mistakes would one make by simply following
the convenient method developed in the previous work (e.g., Sims and Zha,
1997) without imposing such a restriction? Table 1 reports some anomalous
results when the exogeneity restriction is absent from the model. It displays the
variance decompositions for U.S. variables MR*, P*, y*N that are attributed to all
shocks emanating from the Canandian economy at various time horizons, along
with the percentages of these decompositions due to Canadian monetary policy
shocks. By the end of the four-year horizon, Canadian shocks contribute 66.8%
to fluctuations in the U.S. interest rate (R*), 62.0% in the U.S. general price level
(P*), and 45.0% in U.S. output (y*). Of these numbers, Canadian monetary
policy shocks account for 17.3% in R*, 15.2% in P*, and 19.3% in y*. Clearly,
these results are at odds with the actual relationship between the Canadian
economy and U.S. economy.

Fig. 3 reports other anomalous results. The first column of graphics displays
some dynamic responses to a shock originated from the production sector in the
Canadian economy. As can be seen, this shock generates persistent negative
response of the exchange rate (Exc) and substantial rise in both the Canadian
interest rate (R) and U.S. interest rate (R*). In fact, among all shocks this
Canadian shock leads to the largest responses of both Exc and R*. Yet, it seems
odd that large fluctuations in the U.S. interest rate (R*) are caused mainly by
a shock originated in the Canadian economy. Even for the Canadian exchange
rate and interest rate, a priori belief is that its movements are caused mainly by
fluctuations in the U.S. interest rate rather than by a Canadian shock.

T. Zha / Journal of Econometrics 90 (1999) 291–316 311



Fig. 2. Dynamic responses to a Canadian monetary policy shock.
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Table 1
Decomposition of forecast variances attributed to all canadian shocks!

Months 12 24 48

R! 35.2 (6.8) 40.9 (12.7) 66.8 (17.5)
P! 17.4 (1.2) 30.7 (3.6) 62.0 (15.2)
½! 36.2 (18.2) 46.5 (19.3) 45.0 (19.3)

!Numbers in parentheses are percentages of the decompositions that are attributed to Canadian
monetary policy shocks.

These anomalous results are the artifacts of inappropriate treatment
of the relationship between the Canadian economy and U.S. economy.
Indeed, when Canada is taken seriously as a small economy and the exo-
geneity restriction is imposed, fluctuations in both the Canadian interest
rate and exchange rate are caused largely by shocks originated in the U.S.
economy, not the Canadian economy. The second column of graphics in
Fig. 3 displays such results. These are the responses to a shock outside the
Canadian economy. The fall in the Canadian dollar (Exc) and the rise in the
Canadian interest rate (R) are associated with the rise in the U.S. interest rate
(R*). Such a pattern, in contrast to the first column of Fig. 3, one would
normally expect: the Canadian dollar tends to fall when the U.S. interest rate
increases, whereas the Canadian interest rate tends to follow fluctuations in the
U.S. interest rate.

7. Conclusion

Finite-sample inference has become increasingly important in multivariate
time-series models. While some restrictions on lagged relationships in structural
VAR modeling are called for on economic grounds, obtaining exact finite-
sample inference may be difficult.

This paper has developed block Monte Carlo methods to obtain ML esti-
mates and Bayesian inference with less computational burden and has discussed
the scope of their applicability. It is argued that a good many examples in the
existing literature can be characterized by contemporaneously recursive blocks,
and these blocks can be treated as independent for the purposes of estimation
and inference. Meanwhile, concrete examples are used to show that results can
be misleading if researchers fail to impose restrictions on lagged relationships
that clearly make economic sense.
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Fig. 3. Dynamic responses to shocks emanating from the Canadian and U.S. economies. The first
column of graphics corresponds to the model with no exogeneity restriction, and the second column
corresponds to the model with the exogeneity restriction.
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